Human papillomavirus (HPV) infection is the most common viral infection of the reproductive tract, with virtually all cases of cervical cancer being attributable to infection by oncogenic HPVs. However, the exact mechanism and receptors used by HPV to infect epithelial cells are controversial. The current entry model suggests that HPV initially attaches to heparan sulfate proteoglycans (HSPGs) at the cell surface, followed by conformational changes, cleavage by furin convertase, and subsequent transfer of the virus to an as-yet-unidentified high-affinity receptor. In line with this model, we established an in vitro infection system using the HSPG-deficient cell line pgsD677 together with HPV16 pseudovirions (HPV16-PsVs). While pgsD677 cells were nonpermissive for untreated HPV16-PsVs, furin cleavage of the particles led to a substantial increase in infection. Biochemical pulldown assays followed by mass spectrometry analysis showed that furin-precleaved HPV16-PsVs specifically interacted with surface-expressed vimentin on pgsD677 cells. We further demonstrated that both furin-precleaved and uncleaved HPV16-PsVs colocalized with surface-expressed vimentin on pgsD677, HeLa, HaCaT, and NIKS cells, while binding of incoming viral particles to soluble vimentin protein before infection led to a substantial decrease in viral uptake. Interestingly, decreasing cell surface vimentin by small interfering RNA (siRNA) knockdown in HeLa and NIKS cells significantly increased HPV16-PsV infectious internalization, while overexpression of vimentin had the opposite effect. The identification of vimentin as an HPV restriction factor enhances our understanding of the initial steps of HPV-host interaction and may lay the basis for the design of novel antiviral drugs preventing HPV internalization into epithelial cells.IMPORTANCE Despite HPV being a highly prevalent sexually transmitted virus causing significant disease burden worldwide, particularly cancer of the cervix, cell surface events preceding oncogenic HPV internalization are poorly understood. We herein describe the identification of surface-expressed vimentin as a novel molecule not previously implicated in the infectious internalization of HPV16. Contrary to our expectations, vimentin was found to act not as a receptor but rather as a restriction factor dampening the initial steps of HPV16 infection. These results importantly contribute to our current understanding of the molecular events during the infectious internalization of HPV16 and open a new direction in the development of alternative drugs to prevent HPV infection.
Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.
The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin ligands, are important components of signalling pathways involved in animal development. More recently, they have received significant interest due to their involvement in oncogenesis. In most cases, their expression is altered, affecting the likes of cell proliferation and migration. Depending on the context, Eph receptors have the potential to act as both tumour promoters and suppressors in a number of cancers, such as breast cancer, colorectal cancer, lung cancer, prostate cancer, brain cancer and Kaposi’s sarcoma (KS), the latter being intrinsically linked to EphA2 as this is the receptor used for endothelial cell entry by the Kaposi’s sarcoma-associated herpesvirus (KSHV). In addition, EphA2 deregulation is associated with KS, indicating that it has a dual role in this case. Associations between EphA2 sequence variation and KSHV infection/KS progression have been detected, but further work is required to formally establish the links between EphA2 signalling and KS oncogenesis. This review consolidates the available literature of the role of the Eph receptor family, and particularly EphA2, in tumorigenesis, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.