Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.
Post-translational modifications (PTMs) are critical controllers of protein functions. One set of important PTMs are N-methylated side chains of lysine and arginine, which exist in several functionally distinct forms. Multiple...
<p>Post-translational modifications (PTMs) are critical controllers of protein functions. One set of important PTMs are <i>N</i>-methylated side chains of lysine and arginine, which exist in several functionally distinct forms. Multiple groups have demonstrated the selective binding of the most hydrophobic family member, trimethyllysine (Kme3), using various macrocyclic hosts, but the selective binding of lower methylation states remains challenging. Herein we report that a new calixarene modification – the installation of a sulfonate ester at the lower rim of <i>p</i>-sulfonatocalix[4]arene —efficiently generates a <i>N,N</i>-dimethyllysine (Kme2)-selective host. We characterize its binding behaviors in solution, and demonstrate its effectiveness in a pan-methyllysine enrichment step that enables the observation of hundreds of otherwise unobservable methylation marks in global proteomics experiments.</p><p>The submission includes a manuscript preprint, supporting information, and a tabulation of proteomics data.</p>
<p>Post-translational modifications (PTMs) are critical controllers of protein functions. One set of important PTMs are <i>N</i>-methylated side chains of lysine and arginine, which exist in several functionally distinct forms. Multiple groups have demonstrated the selective binding of the most hydrophobic family member, trimethyllysine (Kme3), using various macrocyclic hosts, but the selective binding of lower methylation states remains challenging. Herein we report that a new calixarene modification – the installation of a sulfonate ester at the lower rim of <i>p</i>-sulfonatocalix[4]arene —efficiently generates a <i>N,N</i>-dimethyllysine (Kme2)-selective host. We characterize its binding behaviors in solution, and demonstrate its effectiveness in a pan-methyllysine enrichment step that enables the observation of hundreds of otherwise unobservable methylation marks in global proteomics experiments.</p><p>The submission includes a manuscript preprint, supporting information, and a tabulation of proteomics data.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.