Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change—even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes.
Biological invasions are recognized as a primary driver of large-scale changes in global ecosystems. This study addresses ecomorphological variation in head size within and among populations of an ecologically destructive invasive predator, and evaluates the potential roles of environmental components in phenotypic differentiation. We used four size-corrected measurements of head morphology in Jackson's chameleons, Trioceros jacksonii xantholophus (N = 319), collected from multiple Hawaiian Islands to assess phenotypic variation among and within islands. Results of analysis of variance (ANOVA) comparing chameleon head size (PC1) among islands revealed significant differences (mean difference > 5%) associated with variation in both rainfall and diet composition using Mann-Whitney U-tests and chi-squared analyses. These results suggest that morphological differentiation among populations from different islands has occurred over a relatively short ecological timescale, and is likely the result of ecomorphological adaptation to differences in exploited prey hardness. Intra-island allopatric population variation, however, was also detected in this study. Although we might expect that genetic change is the more likely explanation for differences between islands than within, and that plasticity may be more likely an explanation for the within-than the between-island differences, it is also possible that both within-and between-island patterns are the results of genetic change, or of plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.