The objectives of this study were to determine the effects of supplementation with a single β-adrenergic agonist (β-AA) or a sequence of β-AA on cow performance, carcass characteristics, and mRNA relative abundance of cull cows implanted and fed a concentrate diet. Sixty cull cows were implanted with Revalor-200 (200 mg of trenbolone acetate and 20 mg of estradiol) and assigned to 1 of 4 treatments (n = 15/treatment): CON = fed a concentrate diet only; RH = supplemented with ractopamine-HCl for the last 25 d before slaughter; ZH = supplemented with zilpaterol-HCl for 20 d before a 3-d withdrawal before slaughter; RH + ZH = supplemented with RH for 25 d, followed by ZH for 20 d before a 3-d withdrawal before slaughter. Ractopamine-HCl was supplemented at a dose of 200 mg·animal(-1)·d(-1), and ZH was supplemented at 8.33 mg/kg (100% DM basis) of feed. All cows were fed a concentrate diet for 74 d. Each treatment had 5 cows per pen and 3 replicate pens. Body weights were collected on d 1, 24, 51, and 72. Muscle biopsies from the LM were collected on d 24, 51, and at slaughter from a subsample of 3 cows per pen. Carcass traits were evaluated postslaughter. The 2 ZH treatments averaged 15.3 kg more BW gain, 0.20 kg greater ADG, and 7.8 cm(2) larger LM area than CON and RH treatments, and 21 kg more HCW than CON, but these differences were not significant (P > 0.10), likely due to a sample size of n = 15/treatment. The sequence of RH followed by ZH tended to optimize the combination of HCW, LM area, percent intramuscular fat, and lean color and maturity compared with the ZH treatment. Abundance of β(2)-adrenergic receptor (AR) mRNA was not altered in the RH + ZH treatment during RH supplementation from d 24 to 51 of feeding. However, the abundance of β(2)-AR mRNA increased (P < 0.05) the last 23 d of feeding for the RH treatment and tended (P = 0.10) to increase in ZH cows during ZH supplementation. For all cows, abundance of type IIa myosin heavy chain (MHC-IIa) mRNA decreased (P < 0.05) after 24 d of feeding. Abundance of MHC-IIx mRNA increased (P < 0.05) for ZH and RH + ZH treatments the last 23 d of feeding during ZH supplementation. Although few significant differences were observed in performance or carcass traits, mRNA quantification indicated that β-AA supplementation elicited a cellular response in cull cows. Implanting and feeding cull cows for 74 d, regardless of β-AA supplementation, added economic value by transitioning cows from a cull cow to what is referred to in industry as a white cow market in which cows have white fat resulting from grain feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.