We compared SARS-CoV-2 RNA concentrations in primary settled solids and raw wastewater samples matched in date to investigate the relationship between the two matrices.
We report a 28‐day repeat dose immunotoxicity evaluation of investigational drug MIDD0301, a novel oral asthma drug candidate that targets gamma amino butyric acid type A receptors (GABAAR) in the lung. The study design employed oral administration of mice twice daily throughout the study period with 100 mg/kg MIDD0301 mixed in peanut butter. Compound dosing did not reveal signs of general toxicity as determined by animal weight, organ weight or haematology. Peanut butter plus test drug (in addition to ad libitum standard rodent chow) did not affect weight gain in the adult mice, in contrast to weight loss in 5 mg/kg prednisone‐treated mice. Spleen and thymus weights were unchanged in MIDD0301‐treated mice, but prednisone significantly reduced the weight of those organs over the 28‐day dosing. Similarly, no differences in spleen or thymus histology were observed following MIDD0301 treatment, but prednisone treatment induced morphological changes in the spleen. The number of small intestine Peyer's patches was not affected by MIDD0301 treatment, an important factor for orally administered drugs. Circulating lymphocyte, monocyte and granulocyte numbers were unchanged in the MIDD0301‐treated animals, whereas differential lymphocyte numbers were reduced in prednisone‐treated animals. MIDD0301 treatment did not alter IgG antibody responses to dinitrophenyl following dinitrophenyl‐keyhole limpet haemocyanin immunization, indicating that systemic humoral immune function was not affected. Taken together, these studies show that repeated daily administration of MIDD0301 is safe and not associated with adverse immunotoxicological effects in mice.
A series of novel imidazobenzodiazepine analogs of the lead chiral ligand SH-053-2'F-S-CH 3 (2), an α2/α3/α5 (Bz)GABA (A)ergic receptor subtype selective ligand, which reverses PCP-induced prepulse inhibition (PPI) of acoustic startle, were synthesized. These chiral (S)-CH 3 ligands are targeted for the treatment of schizophrenia and depression. These new ligands were designed by modifying the labile ester functionality in 2 to improve the metabolic stability, cytotoxicity, and activity as compared to 2. Based on the data to date, the most promising ligands are the N-cyclopropyl amide GL-I-55 (8c) and the methyl bioisostere GL-I-65 (9a). The in vitro metabolic stability, cytotoxicity and in vivo locomotor effects are described in this report. Based on these results, 8c and 9a are the most promising for further in vivo pharmacology.
Wastewater surveillance for SARS-CoV-2 is becoming a widespread public health metric, but little is known about pre-analytical influences on these measurements. We examined SARS-CoV-2 loads from two sewer service areas with different travel times that were within the same metropolitan area. Throughout the one-year study, case rates were nearly identical between the two service areas allowing us to compare differences in empirical concentrations relative to conveyance system characteristics and wastewater treatment plant parameters. We found time did not have a significant effect on degradation of SARS-CoV-2 when using average transit times (22 vs. 7.5 h) (p = 0.08), or under low flow conditions when transit times are greater (p = 0.14). Flow increased rather than decreased SARS-CoV-2 case-adjusted concentrations, but this increase was only significant in one service area. Warmer temperatures (16.8–19.8 °C) compared with colder (8.4–12.3 °C) reduced SARS-CoV-2 case-adjusted loads by ~50% in both plants (p < 0.05). Decreased concentrations in warmer temperatures may be an important factor to consider when comparing seasonal dynamics. Oxygen demand and suspended solids had no significant effect on SARS-CoV-2 case-adjusted loads overall. Understanding wastewater conveyance system influences prior to sample collection will improve comparisons of regional or national data for SARS-CoV-2 community infections.
Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Methods have been developed using both the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in solids. To investigate this relationship further, we collaborated with six other laboratories to conduct a study across five publicly owned treatment works (POTWs) where both primary solids and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations by mass (gene copies per gram) were higher in solids than in influent by approximately three orders of magnitude. Concentrations in matched solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both solids and influent were correlated to COVID-19 incidence rates in the sewershed and thus representative of disease burden; the solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of solids has the advantage of using less sample volume to achieve similar sensitivity to influent methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.