Abstract. We present a novel and efficient algorithm for solving the most reliable subgraph problem with multiple query nodes on undirected random graphs. Reliable subgraphs are useful for summarizing connectivity between given query nodes. Formally, we are given a graph G = (V, E), a set of query (or terminal) nodes Q ⊂ V , and a positive integer B. The objective is to find a subgraph H ⊂ G containing Q, such that H has at most B edges, and the probability that H is connected is maximized. Previous algorithms for the problem are either computationally demanding, or restricted to only two query nodes. Our algorithm extends a previous algorithm to handle k query nodes, where 2 ≤ k ≤ |V |. We demonstrate experimentally the usefulness of reliable k-terminal subgraphs, and the accuracy, efficiency and scalability of the proposed algorithm on real graphs derived from public biological databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.