Novel coronavirus disease 2019 (COVID-19) is associated with a hypercoagulable state, characterized by abnormal coagulation parameters and by increased incidence of cardiovascular complications. With this study, we aimed to investigate the activation state and the expression of transmembrane proteins in platelets of hospitalized COVID-19 patients. We investigated transmembrane proteins expression with a customized mass cytometry panel of 21 antibodies. Platelets of 8 hospitalized COVID-19 patients not requiring intensive care support and without pre-existing conditions were compared to platelets of healthy controls (11 donors) with and without in vitro stimulation with thrombin receptor-activating peptide (TRAP). Mass cytometry of non-stimulated platelets detected an increased surface expression of activation markers P-Selectin (0.67 vs. 1.87 median signal intensity for controls vs. patients, p = 0.0015) and LAMP-3 (CD63, 0.37 vs. 0.81, p = 0.0004), the GPIIb/IIIa complex (4.58 vs. 5.03, p < 0.0001) and other adhesion molecules involved in platelet activation and platelet–leukocyte interactions. Upon TRAP stimulation, mass cytometry detected a higher expression of P-selectin in COVID-19 samples compared to controls (p < 0.0001). However, we observed a significantly reduced capacity of COVID-19 platelets to increase the expression of activation markers LAMP-3 and P-Selectin upon stimulation with TRAP. We detected a hyperactivated phenotype in platelets during SARS-CoV-2 infection, consisting of highly expressed platelet activation markers, which might contribute to the hypercoagulopathy observed in COVID-19. In addition, several transmembrane proteins were more highly expressed compared to healthy controls. These findings support research projects investigating antithrombotic and antiplatelet treatment regimes in COVID-19 patients, and provide new insights on the phenotypical platelet expression during SARS-CoV-2 infection.
Reticulated platelets (RPs) are larger, hyperreactive platelets that contain significantly more ribonucleic acid (RNA) compared with mature platelets (MPs). High levels of RPs in peripheral blood are predictors of an insufficient response to dual antiplatelet therapy in cardiovascular patients and of adverse cardiovascular events. However, the mechanisms underlying these correlations remain widely unknown and the biology of RPs has not been investigated yet. Here, we compared for the first time the transcriptomic profiles of RPs and MPs isolated from peripheral blood of healthy donors. Total RNA sequencing revealed 1,744 differentially expressed genes (670 downregulated, 1,074 upregulated) in RPs compared with MPs. In particular, transcripts for the collagen receptor GP6, thromboxane receptor A2 (TBXA2R), thrombin receptor PAR4 (F2RL3), and adenosine triphosphate receptors P2RX1, ORAI2, and STIM1 (both involved in calcium signaling) were significantly upregulated in RPs, whereas several RNA regulators as the ribonuclease PARN, the RISC-component TNRC6A, and the splicing factor LUC7L3 were downregulated in RPs. Gene ontology analysis revealed an enrichment of relevant biological categories in RPs including platelet activation and blood coagulation. Gene Set Enrichment Analysis showed an overrepresentation of several platelet activation pathways like thrombin, thromboxane, and glycoprotein IIb/IIIa signaling in RPs. Small-RNA sequencing reported 9 micro-RNAs significantly downregulated in RPs with targets involved in platelet reactivity. Our data show for the first time an enrichment of several prothrombotic transcripts in RPs providing a first biological explanation for their hyperreactive phenotype.
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.