Face recognition systems require the ability to efficiently scan an existing database of faces to locate a match for a newly acquired face. The large number of faces in real world databases makes computationally intensive algorithms impractical for scanning entire databases. We propose the use of more efficient algorithms to "prescreen" face databases, determining a limited set of likely matches that can be processed further to identify a match. We use both radial symmetry and shape to extract five features of interest on 3D range images of faces. These facial features determine a very small subset of discriminating points which serve as input to a prescreening algorithm based on a Hausdorff fraction. We show how to compute the Haudorff fraction in linear O(n) time using a range image representation. Our feature extraction and prescreening algorithms are verified using the FRGC v1.0 3D face scan data. Results show 97% of the extracted facial features are within 10 mm or less of manually marked ground truth, and the prescreener has a rank 6 recognition rate of 100%.
Cast shadows can be significant in many computer vision applications, such as lighting-insensitive recognition and surface reconstruction. Nevertheless, most algorithms neglect them, primarily because they involve nonlocal interactions in nonconvex regions, making formal analysis difficult. However, many real instances map closely to canonical configurations like a wall, a V-groove type structure, or a pitted surface. In particular, we experiment with 3D textures like moss, gravel, and a kitchen sponge, whose surfaces include canonical configurations like V-grooves. This paper takes a first step toward a formal analysis of cast shadows, showing theoretically that many configurations can be mathematically analyzed using convolutions and Fourier basis functions. Our analysis exposes the mathematical convolution structure of cast shadows and shows strong connections to recent signal-processing frameworks for reflection and illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.