Purpose: To test whether a direct antiangiogenic peptide (anginex) and a vascular endothelial growth factor antibody (bevacizumab, Avastin) can transiently normalize vasculature within tumors to improve oxygen delivery, alleviate hypoxia, and increase the effect of radiation therapy. Experimental Design: Tumor oxygenation levels, microvessel density and pericyte coverage were monitored in three different solid tumor models (xenograft human ovarian carcinoma MA148, murine melanoma B16F10, and murine breast carcinoma SCK) in mice. Multiple treatment schedules were tested in these models to assess the influence on the effect of radiation therapy. Results: In all three tumor models, we found that tumor oxygenation levels, monitored daily in real time, were increased during the first 4 days of treatment with both anginex and bevacizumab. From treatment day 5 onward, tumor oxygenation in treated mice decreased significantly to below that in control mice. This ''tumor oxygenation window'' occurred in all three tumor models varying in origin and growth rate. Moreover, during the treatment period, tumor microvessel density decreased and pericyte coverage of vessels increased, supporting the idea of vessel normalization. We also found that the transient modulation of tumor physiology caused by either antiangiogenic therapy improved the effect of radiation treatment. Tumor growth delay was enhanced when single dose or fractionated radiotherapy was initiated within the tumor oxygenation window as compared with other treatment schedules. Conclusions:The results are of immediate translational importance because the clinical benefits of bevacizumab therapy might be increased by more precise treatment scheduling to ensure radiation is given during periods of peak radiosensitivity. The oxygen elevation in tumors by nonĝ rowth factor^mediated peptide anginex suggests that vessel normalization might be a general phenomenon of agents directed at disrupting the tumor vasculature by a variety of mechanisms.
We found that beta-lapachone (beta-lap), a novel bioreductive drug, caused rapid apoptosis and clonogenic cell death in A549 human lung epithelial cancer cells in vitro in a dose-dependent manner. The clonogenic cell death caused by beta-lap could be significantly inhibited by dicoumarol, an inhibitor of NAD(P)H:quinone oxido-reductase (NQO1), and also by siRNA for NQO1, demonstrating that NQO1-induced bioreduction of beta-lap is an essential step in beta-lap-induced cell death. Irradiation of A549 cells with 4 Gy caused a long-lasting upregulation of NQO1, thereby increasing NQO1-mediated beta-lap-induced cell deaths. Although the direct cause of beta-lap-induced apoptosis is not yet clear, beta-lap treatment reduced the expression of p53 and NF-kappaB, whereas it increased cytochrome C release, caspase-3 activity, and gammaH2AX foci formation. Importantly, beta-lap treatment immediately after irradiation enhanced radiation-induced cell death, indicating that beta-lap sensitizes cancer cells to radiation, in addition to directly killing some of the cells. The growth of A549 tumors induced in immunocompromised mice could be markedly suppressed by local radiation therapy when followed by beta-lap treatment. This is the first study to demonstrate that combined radiotherapy and beta-lap treatment can have a significant effect on human tumor xenografts.
CYT-6091, by selectively delivering TNF to solid tumors, improves the safety of TNF treatment. In addition, the targeted delivery of TNF augments cancer thermal therapy efficacy possibly by inducing a tumor-localized inflammatory response.
Targeted delivery of therapeutic drugs promises to become the norm to treat cancer. Here, we conjugated the cytotoxic agent 6-hydroxypropylacylfulvene (HPAF) to anginex, a peptide that targets galectin-1, which is highly expressed in endothelial cells of tumor vessels. In a human ovarian cancer model in mice, the conjugate inhibited tumor growth better than equivalent doses of either compound alone. Immunofluorescence on tumor tissue demonstrated that the conjugate, like parent anginex, selectively targeted tumor vasculature and inhibited tumor angiogenesis. Increased activity from the conjugate further suggests that HPAF retains at least some of its normal cytotoxic activity when linked to anginex. More importantly perhaps is the observation that the conjugate abrogates apparent systemic toxicity from treatment with HPAF. This work contributes to the development of tumor vascular targeting agents against cancer in the clinic.
Galectin-1 (gal-1), which binds b-galactoside groups on various cell surface receptors, is crucial to cell adhesion and migration, and is found to be elevated in several cancers. Previously, we reported on 6DBF7, a dibenzofuran (DBF)-based peptidomimetic of the gal-1 antagonist anginex. In the present study, we used a structure-based approach to optimize 6DBF7. Initial NMR studies showed that 6DBF7 binds to gal-1 on one side of the b-sandwich away from the lectin's carbohydrate binding site. Although an alanine scan of 6DBF7 showed that the two cationic groups (lysines) in the partial peptide are crucial to its angiostatic activity, it is the hydrophobic face of the amphipath that appears to interact directly with the surface of gal-1. Based on this structural information, we designed and tested additional DBF analogs. In particular, substitution of the C-terminal Asp for alanine and branched alkyl side chains (Val, Leu, Ile) for linear ones (Nle, Nva) rendered the greatest improvements in activity. Flow cytometry with gal-1 2/2 splenocytes showed that 6DBF7 and two of its more potent analogs (DB16 and DB21) can fully inhibit fluorescein isothiocyanate-gal-1 binding. Moreover, heteronuclear single-quantum coherence NMR titrations showed that the presence of DB16 decreases gal-1 affinity for lactose, indicating that the peptidomimetic targets gal-1 as a noncompetitive, allosteric inhibitor of glycan binding. Using tumor mouse models (B16F10 melanoma, LS174 lung, and MA148 ovarian), we found that DB21 inhibits tumor angiogenesis and tumor growth significantly better than 6DBF7, DB16, or anginex. DB21 is currently being developed further and holds promise for the management of human cancer in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.