The Coronavirus-2019 (COVID-19) pandemic has shifted research and healthcare system priorities, stimulating literature on implementation and evaluation of telerehabilitation for a variety of patient populations. While there is substantial literature on individual telerehabilitation, evidence about group telerehabilitation remains limited despite its increasing use by rehabilitation providers. Therefore, the purpose of this manuscript is to describe our expert team’s consensus on practice considerations for adapting in-person group rehabilitation to group telerehabilitation to provide rapid guidance during a pandemic and create a foundation for sustainability of group telerehabilitation beyond the pandemic’s end.
During normal T cell development in mouse and human, a low-frequency population of immature CD4 − CD8 − double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocompatibility complex (MHC) for their generation/detection. When MHC - is present, however, EADN cells can respond to it, displaying a degree of coreceptor-independent MHC reactivity not typical of mature, conventional αβ T cells. We found these data to be connected with observations that EADN cells were susceptible to T cell acute lymphoblastic leukemia (T-ALL) transformation in both humans and mice. Using the OT-1 TCR transgenic system to model EADN-stage αβ TCR expression, we found that EADN leukemogenesis required MHC to induce development of T-ALL bearing NOTCH1 mutations. This leukemia-driving MHC requirement could be lost, however, upon passaging the tumors in vivo, even when matching MHC was continuously present in recipient animals and on the tumor cells themselves. These data demonstrate that MHC:TCR signaling can be required to initiate a cancer phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum.
T cell lymphoblastic leukemia (T-ALL) is an aggressive cancer arising from transformed thymocytes. Most human T-ALL involves hyperactive NOTCH signaling that is often caused by activating NOTCH mutations. However, the identification of specific molecular signals that might induce or select for mutation and transformation are incompletely understood. We report that an understudied low-frequency, natural thymocyte subset expresses αβ T cell antigen receptor (TCR) earlier than most cells in mice and humans; engagement of the early αβTCR by major histocompatibility complexes (MHC) can cause outgrowth of NOTCH1 mutant clones and T-ALL leukemogenesis in a mouse model of T-ALL. Assessment of 5 recent human T-ALL cases found one to present this unique CD4-CD8- double- negative (DN) stage as the earliest identifiable developmental stage. These studies present a model of T-ALL leukemogenesis that identifies (i) a natural cell stage of origin susceptible to transformation, (ii) a matching mouse model showing that a signaling receptor (αβTCR) and its ligand (MHC) drive leukemogeneis and outgrowth of tumors bearing activating NOTCH1 mutations, and (iii) a human case that presents with a tumor consistent with this model and mechanism. In past work, the pre-TCR has been shown to impact T-ALL development in mice (Campese et al, Blood 2006), but an oncogenic role for the mature αβTCR is less well characterized and somewhat surprising. This is because, although T-ALL tumor cells may express variable levels of surface αβTCR/CD3, the earliest cell stages that are thought to transform are also thought to precede stages with αβTCR expression. Most conventional αβ thymocytes rearrange TCRβ and TCRα loci in separate, ordered developmental stages. However, some thymocytes in the conventional pathway rearrange both at DN stage thus exhibiting 'precocious' αβTCR (PAT) expression. Importantly, these PAT cells are indeed part of the conventional αβ lineage, being a 'subset' only due to early αβTCR expression but without known distinction in ultimate immune function (Aifantis et al, JEM 2006). We found that ~0.01% of mouse and human thymocytes are such PAT cells at steady state. To interrogate the PAT thymocyte surface phenotype, we performed multi-parametric flow cytometry with Spanning-tree Progression Analysis of Density-normalized Events (SPADE). This revealed that PAT thymocytes constitute a DN subset that is not associated with other well-described unconventional DN thymocytes known to express αβTCR, consistent with as the expectation that PATs are part of the conventional developmental pathway. We observed that the OT1 TCR transgene is expressed in mice with parallel timing and level to the natural PAT subset, allowing use of this model to study antigen-dependent signaling and oncogenesis. In a cohort study, no T-ALL was observed in wild-type C57BL/6 or OT-1.β2M-/- mice (deficient in endogenous antigen presentation), but MHC-sufficient OT-1 mice developed PAT-stage-specific T-ALL with activating NOTCH1 mutations. Transplant experiments corroborated a requirement for antigen presentation and TCR signaling for tumor maintenance as transplanted tumors grew in MHC+ but not MHC-deficient mice. This predicted that PAT thymocytes might have an unusual ability to signal through αβTCR even without coreceptor expression. When cultured in the presence of either exogenously added β2M or antigen presenting cells, both untransformed and neoplastic PAT cells upregulated CD69 in response to the OT-1 antigenic peptide, OVA. Furthermore, ex vivo analysis of PAT cells from polyclonal C57BL/6 versus MHC-deficient mice showed intrinsic upregulation of TCR-signaling-dependent Nur77 in an MHC-dependent manner. These data revealed a unique ability of PAT cells to engage in co-receptor independent but antigen-dependent signaling. Microarray analysis showed that the gene expression profile of neoplastic PAT cells from OT-1 T-ALL most closely resembled that of conventional post β-selection DN thymocytes, in agreement with the natural PAT stage during normal T cell development. These data support a model in which transformation occurred in the naturally occurring αβ PAT thymocyte subset as cell-of-origin. Collectively, our data suggest that precocious αβTCR expression and coreceptor-independent antigen engagement can cause activating NOTCH mutation and T-ALL development. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.