The synthesis, characterization, and biomedical application in preparing more thromboresistant polymeric coatings for a series of lipophilic dialkyldiamine-based diazeniumdiolatesare described. Dialkylhexamethylenediamine diazeniumdiolates of the form RN[N(O)NO](-)(CH(2))(6)NH(2)(+)R, where R = CH(3), CH(2)CH(3), (CH(2))(2)CH(3), (CH(2))(3)CH(3), (CH(2))(4)CH(3,) (CH(2))(5)CH(3), and (CH(2))(11)CH(3), are prepared via reaction of the corresponding diamine with NO. The more lipophilic diazeniumdiolates [e.g., R = (CH(2))(3)CH(3)] can be incorporated into hydrophobic polymeric films (e.g., plasticized PVC), and the resulting materials release NO for extended periods of time upon exposure to PBS buffer. The mechanism of NO release from these films is examined in detail. More stable initial NO release can be achieved by adding lipophilic anionic species (e.g., tetraphenylborate derivative) to the polymeric material to buffer the activity of protons within the organic phase. It is shown that the use of these new lipophilic NO-donors in polymers provides the ability to tailor NO release rates for a variety of medical applications. As an example, polymers doped with N,N'-dibutylhexamethylenediamine diazeniumdiolate and a tetraphenylborate derivative are employed as coatings for vascular grafts in sheep. The NO release grafts exhibited enhanced performance and had an average 95% thrombus-free surface area compared to 42% for the corresponding control grafts when examined after 21d of implantation.
In vivo glucose sensor nitric oxide (NO) release is a means of mediating the inflammatory response that may cause sensor/tissue interactions and degraded sensor performance. The NO release (NOr) sensors were prepared by doping the outer polymeric membrane coating of previously reported needle-type electrochemical sensors with suitable lipophilic diazeniumdiolate species. The Clarke error grid correlation of sensor glycemia estimates versus blood glucose measured in Sprague-Dawley rats yielded 99.7% of the points for NOr sensors and 96.3% of points for the control within zones A and B (clinically acceptable) on Day 1, with a similar correlation for Day 3. Histological examination of the implant site demonstrated that the inflammatory response was significantly decreased for 100% of the NOr sensors at 24 h. The NOr sensors also showed a reduced run-in time of minutes versus hours for control sensors. NO evolution does increase protein nitration in tissue surrounding the sensor, which may be linked to the suppression of inflammation. This study further emphasizes the importance of NO as an electroactive species that can potentially interfere with glucose (peroxide) detection. The NOr sensor offers a viable option for in vivo glucose sensor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.