Attenuation measurements for primary x-ray spectra from 25 kVp to 18 MV were made using aluminum filters for all energies except for orthovoltage where copper filters were used. An iterative perturbation method, which utilized these measurements, was employed to derive the apparent x-ray spectrum. An initial spectrum or pre-spectrum was used to start the process. Each energy value of the pre-spectrum was perturbed positively and negatively, and an attenuation curve was calculated using the perturbed values. The value of x-rays in the given energy bin was chosen to minimize the difference between the measured and calculated transmission curves. The goal was to derive the minimum difference between the measured transmission curve and the calculated transmission curve using the derived x-ray spectrum. The method was found to yield useful information concerning the lower photon energy and the actual operating potential versus the nominal potential. Mammographic, diagnostic, orthovoltage, and megavoltage x-ray spectra up to 18 MV nominal were derived using this method. The method was validated using attenuation curves from published literature. The method was also validated using attenuation curves calculated from published spectra. The attenuation curves were then used to derive the x-ray spectra.
A model for calculating mammographic spectra independent of measured data and fitting parameters is presented. This model is based on first principles. Spectra were calculated using various target and filter combinations such as molybdenum/molybdenum, molybdenum/rhodium, rhodium/rhodium, and tungsten/aluminum. Once the spectra were calculated, attenuation curves were calculated and compared to measured attenuation curves. The attenuation curves were calculated and measured using aluminum alloy 1100 or high purity aluminum filtration. Percent differences were computed between the measured and calculated attenuation curves resulting in an average of 5.21% difference for tungsten/aluminum, 2.26% for molybdenum/molybdenum, 3.35% for rhodium/rhodium, and 3.18% for molybdenum/rhodium. Calculated spectra were also compared to measured spectra from the Food and Drug Administration [Fewell and Shuping, Handbook of Mammographic X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1979)] and a comparison will also be presented.
To compare finite-size pencil beam/equivalent path-length (FSPB/EPL) and Monte Carlo (MC) SBRT dose computations for serial tomotherapy and to quantitatively assess dose differences between the dose calculation methods. Based on 72 SBRT plans for pulmonary targets, FSPB/EPL, considering the inhomogeneous lung environment, and MC calculations were performed to establish differences between FSPB/EPL predicted dose and MC derived doses. Compared with MC, FSPB/EPL consistently overestimated minimum doses to the clinical target volume and planning target volumes by an average of 18.1+/-7.15% (range 4 to 33.4%), and 21.9+/-10.4% (range 1.2 to 45.5%), respectively. The respective mean target dose differences were 15.5+/-7.4% (2.8-36.4%) and 19.2+/-7.6% (3.6-40.1%). Deviations from MC doses were lesion size and location dependent, with smaller lesions completely embedded into lung parenchyma being most susceptible. Larger lesion in contact with mediastinum and chest wall showed lesser differences. In comparison with MC dose calculation, FSPB/EPL overestimates doses delivered to pulmonary SBRT targets. The observed dose differences may have impact on local tumor control rates, and may deserve consideration when using fast, but less accurate dose calculation methods.
Background: Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in sourcebased radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.