Deletions and mutations involving the Retinoic Acid Induced 1 (RAI1) gene at 17p11.2 cause Smith-Magenis syndrome (SMS). Here we report a patient with autism as the main clinical presentation, with some SMS-like features and a rare de novo RAI1 gene mutation, c.3440G > A (p.R1147Q). We functionally characterized the RAI1 p.R1147Q mutant protein. The mutation, located near the nuclear localization signal, had no effect on the subcellular localization of the mutant protein. However, similar to previously reported RAI1 missense mutations in SMS patients, the RAI1 p.R1147Q mutant protein showed a significant deficiency in activating in vivo transcription of a reporter gene driven by a BDNF (brain-derived neurotrophic factor) intronic enhancer. In addition, expression of other genes associated with neurobehavioral abnormalities and/or neurodevelopmental disorders were found to be altered in this patient. These results suggest a likely contribution of RAI1, either alone or in combination of other factors, to social behavior and reinforce the RAI1 gene as a candidate gene in patients with autistic manifestations or social behavioral abnormalities.
Sotos syndrome (SoS) is a multiple anomaly, congenital disorder characterized by overgrowth, macrocephaly, distinctive facial features and variable degree of intellectual disability. Haploinsufficiency of the <i>NSD1</i> gene at 5q35.3, arising from 5q35 microdeletions, point mutations, and partial gene deletions, accounts for a majority of patients with SoS. Recently, mutations and possible pathogenetic rare CNVs, both affecting a few candidate genes for overgrowth, have been reported in patients with Sotos-like overgrowth features. To estimate the frequency of <i>NSD1</i> defects in the Brazilian SoS population and possibly reveal other genes implicated in the etiopathogenesis of this syndrome, we collected a cohort of 21 Brazilian patients, who fulfilled the diagnostic criteria for SoS, and analyzed the <i>NSD1</i> and <i>PTEN</i> genes by means of multiplex ligation-dependent probe amplification and mutational screening analyses. We identified a classical <i>NSD1</i> microdeletion, a novel missense mutation (p.C1593W), and 2 previously reported truncating mutations: p.R1984X and p.V1760Gfs*2. In addition, we identified a novel de novo <i>PTEN</i> gene mutation (p.D312Rfs*2) in a patient with a less severe presentation of SoS phenotype, which did not include pre- and postnatal overgrowth. For the first time, our study implies <i>PTEN</i> in the pathogenesis of SoS and further emphasizes the existence of ethno-geographical differences in <i>NSD1</i> molecular alterations between patients with SoS from Europe/North America (70-93%) and those from South America (10-19%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.