The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ’s treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme’s diffusion and FtsZ’s treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.
Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid‐shaped Streptococcus pneumoniae (Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examined Spn cells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D‐SIM (structured‐illumination microscopy). Labeling with fluorescent D‐amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin‐binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading‐edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA‐marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced “nodes” of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.
The peptidoglycan (PG) mesh, which consists of peptide-cross-linked glycan chains, determines the shape of eubacteria, contributing to their colonization and survival in different environmental niches
Bacterial peptidoglycan (PG) synthesis requires strict spatial and temporal organization to reproduce specific cell shapes. In the ovoid-shaped, pathogenic bacterium Streptococcus pneumoniae (Spn), septal and peripheral (sidewall-like) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examined Spn cells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D-SIM (structured-illumination microscopy). Using fluorescent D-amino acid (FDAA) probes, we show that areas of new transpeptidase (TP) activity catalyzed by penicillin-binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading-edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA-marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Short pulses of FDAA labeling revealed an arrangement of separate regularly spaced nodes of TP activity around the division site of predivisional cells. Control experiments in wild-type and mutant strains support the interpretation of nodal spacing of TP activity, and statistical analysis confirmed that the number of nodes correlates with different ring diameters. This nodal pattern of FDAA labeling is conserved in other ovoid-shaped species. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal a highly ordered PG synthesis apparatus in ovococcal bacteria at different stages of division.
How proteins move through space and time is a fundamental question in biology. While great strides have been made towards a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We review systems in several bacteria, including Escherichia coli , Bacillus subtilis , and Streptococcus pneumoniae , and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed since “one size does not fit all”. For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multi-protein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis . The enzymatic activity of the TG:TPs drives motion in some species, while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases has been observed using single particle tracking technology. Here, we examine the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.