Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.
BackgroundLyme neuroborreliosis (LNB) is a frequent manifestation of Lyme disease in children and its current diagnosis has limitations. The elevation of the chemokine CXCL13 in the cerebrospinal fluid (CSF) of adult patients with LNB has been demonstrated and suggested as a new diagnostic marker. Our aim was to evaluate this marker in the CSF of children with suspected LNB and to determine a CXCL13 cut-off concentration that would discriminate between LNB and other central nervous system (CNS) infections.MethodsFor this single-center retrospective case-control study we used a diagnostic-approved ELISA to measure CXCL13 concentrations in the CSF of 185 children with LNB suspicion at presentation. Patients were classified into definite LNB (cases), non-LNB (controls with other CNS affections), and possible LNB. A receiver-operating characteristic curve was generated by comparison of cases and controls.ResultsCXCL13 was significantly elevated in the CSF of 53 children with definite LNB (median 774.7 pg/ml) compared to 91 control patients (median 4.5 pg/ml, p < 0.001). A cut-off of 55 pg/ml resulted in a sensitivity of 96.7% and a specificity of 98.1% for the diagnosis of definite LNB and the test exhibited a diagnostic odds ratio of 1525.3. Elevated CSF CXCL13 levels were also detected in three controls with viral meningitis (enterovirus n = 1, varicella-zoster virus n = 2) while other CNS affections such as idiopathic facial palsy did not lead to CXCL13 elevation. Of the 41 patients with possible LNB, 27% had CXCL13 values above the cut-off of 55 pg/ml (median 16.7 pg/ml).ConclusionsCSF CXCL13 is highly elevated in children during early LNB as previously shown in adults. CXCL13 is a highly sensitive and specific marker that helps to differentiate LNB from other CNS affections in children.
Lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cell responses are considered to be independent of CD28-B7 costimulation. However, the LCMV-specific response has never been evaluated in B7.1/B7.2(-/-) mice. For this reason, we decided to study the T cell response in B7.1/B7.2(-/-) mice infected with two different strains of LCMV, one (Traub strain) typically causing low-grade chronic infection, and another (Armstrong clone 53b) displaying very limited capacity for establishing chronic infection. Using Traub virus we found that most B7.1/B7.2(-/-) mice were unable to rid themselves of the infection. Chronic infection was associated with a perturbed CD8(+) T cell epitope hierarchy, as well as with the accumulation of cells expressing markers of terminal differentiation and being unable to respond optimally to Ag restimulation. Examination of matched CD28(-/-) mice revealed a similar albeit less pronounced pattern of CD8(+) T cell dysfunction despite lack of virus persistence. Finally, analysis of B7.1/B7.2(-/-) mice infected with Armstrong virus revealed a scenario quite similar to that in Traub infected CD28(-/-) mice; that is, the mice displayed evidence of T cell dysfunction, but no chronic infection. Taken together, these results indicate that B7 costimulation is required for induction and maintenance of LCMV-specific CD8(+) T cell memory, irrespective of the LCMV strain used for priming. However, the erosion of CD8(+) T cell memory in B7.1/B7.2(-/-) mice was more pronounced in association with chronic infection. Finally, virus-specific T cell memory was more impaired in the absence of B7 molecules than in the absence of the CD28 receptor, supporting earlier data suggesting the existence of additional stimulatory receptors for B7
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.