Glutamate racemase (RacE) is responsible for converting l-glutamate to d-glutamate, which is an essential component of peptidoglycan biosynthesis, and the primary constituent of the poly-gamma-d-glutamate capsule of the pathogen Bacillus anthracis. RacE enzymes are essential for bacterial growth and lack a human homolog, making them attractive targets for the design and development of antibacterial therapeutics. We have cloned, expressed and purified the two glutamate racemase isozymes, RacE1 and RacE2, from the B. anthracis genome. Through a series of steady-state kinetic studies, and based upon the ability of both RacE1 and RacE2 to catalyze the rapid formation of d-glutamate, we have determined that RacE1 and RacE2 are bona fide isozymes. The X-ray structures of B. anthracis RacE1 and RacE2, in complex with d-glutamate, were determined to resolutions of 1.75 A and 2.0 A. Both enzymes are dimers with monomers arranged in a "tail-to-tail" orientation, similar to the B. subtilis RacE structure, but differing substantially from the Aquifex pyrophilus RacE structure. The differences in quaternary structures produce differences in the active sites of racemases among the various species, which has important implications for structure-based, inhibitor design efforts within this class of enzymes. We found a Val to Ala variance at the entrance of the active site between RacE1 and RacE2, which results in the active site entrance being less sterically hindered for RacE1. Using a series of inhibitors, we show that this variance results in differences in the inhibitory activity against the two isozymes and suggest a strategy for structure-based inhibitor design to obtain broad-spectrum inhibitors for glutamate racemases.
We used SpalphaI-1-156 peptide, a well-characterized model peptide of the alphaN-terminal region of erythrocyte spectrin, and SpalphaII-1-149, an alphaII brain spectrin model peptide similar in sequence to SpalphaI-1-156, to study their association affinities with a betaI-spectrin peptide, SpbetaI-1898-2083, by isothermal titration calorimetry. We also determined their conformational flexibilities in solution by small-angle X-ray scattering (SAXS) methods. These two peptides exhibit sequence homology and could be expected to exhibit similar association affinities with beta-spectrin. However, our studies show that the affinity of SpalphaII-1-149 with SpbetaI-1898-2083 is much higher than that of SpalphaI-1-156. Our SAXS findings also indicate a significantly more extended conformation for SpalphaII-1-149 than for SpalphaI-1-156. The radius of gyration values obtained by two different analyses of SAXS data and by molecular modeling all show a value of about 25 A for SpalphaI-1-156 and of about 30 A for SpalphaII-1-149, despite the fact that SpalphaI-1-156 has seven amino acid residues more than SpalphaII-1-149. For SpalphaI-1-156, the SAXS results are consistent with a flexible junction between helix C' and the triple helical bundle that allows multiple orientations between these two structural elements, in good agreement with our published NMR analysis. The SAXS findings for SpalphaII-1-149 support the hypothesis that this junction region is rigid (and probably helical) for alphaII brain spectrin. The nature of the junction region, from one extreme as a random coil (conformationally mobile) segment in alphaI to another extreme as a rigid segment in alphaII, determines the orientation of helix C' relative to the first structural domain. We suggest that this particular junction region in alpha-spectrin plays a major role in modulating its association affinity with beta-spectrins, and thus regulates spectrin tetramer levels. We also note that these are the first conformational studies of brain spectrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.