Background and aims Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life‐threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. Methods We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC‐rich sequences. A pH‐sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35‐s patch‐clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. Results In the present work, we observed a good correlation between cell surface expression, assessed by the pH‐sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. Conclusions Fast‐track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch‐clamp system.
Background Diffuse Midline Glioma, H3K27M-mutant (DMG) is a rare, highly aggressive pediatric tumor affecting the brainstem, and is one of the deadliest cancers. Currently available treatment options such as chemotherapy and radiotherapy do only modestly prolong survival. In this pathology, H3K27 mutations deregulate Polycomb Repressive Complex 2 (PRC2), including enzymatic activity of EZH2, which is therefore under investigation as a therapeutic target. Methods We used a chemical EZH2 inhibitor, GSK126, small interfering RNAs and a CRISPR/Cas9 knockout approaches in a series of DMG tumor cell lines to investigate metabolic treatment responses by proteomic analysis. A combination strategy was elaborated and studied in primary and established DMG cells, spheroid 3D cultures and in vivo in a chick chorio-allantoic membrane DMG assay and an orthotopic intracranial DMG mouse model. Results GSK126 shows significant (p<0.05-0.001) inhibitory effects in in vitro cell proliferation assays and induces apoptosis. Chemical targeting of EZH2 induced expression of proteins implicated in cholesterol metabolism. Low-dose GSK126 treatment together with statins revealed strong growth inhibition in combinatorial treatments, but not in single treatments, both in DMG cells in vitro, in DMG spheroid cultures and in chick and mouse in vivo models (p<0.05). All statistical tests were two-sided. Conclusions Our results reveal an unexpected GSK126-inducible sensitivity to cholesterol biosynthesis inhibitors in highly aggressive pediatric glioma that warrants further evaluation as treatment strategy. This combinatorial therapy should have few side effects because of the low doses used to achieve significant anti-tumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.