Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.
There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible because of retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is because of decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is because of retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report, we conducted a preregistered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 d after training), a forgotten memory (8 d after training), and a savings memory (8 d after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica ( n = 8 samples/group). We found that the reactivation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-d-old) memory, with no coregulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression ( r = 0.04 95% confidence interval (CI) [–0.12, 0.20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.
[[This is a Stage 1 Registered Report manuscript. The project was submitted for review to eNeuro. Upon revision and acceptance, this version of the manuscript was pre-registered on the OSF (9/11/2019, https://osf.io/fqh8j) (but due to an oversight not posted as a preprint until July 2020). A Stage 2 manuscript is now posted as a pre-print (https://psyarxiv.com/h59jv) and is under review at eNeuro. A link to the final Stage 2 manuscript will be added when available.]]There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting make different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval-failure then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day from training), a forgotten memory (8 days from training), and a savings memory (8 days from training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We find that the transcriptional correlates of savings are [highly similar / somewhat similar / unique] relative to new (1-day-old) memories. Specifically, savings memory and a new memory share [X] of [Y] regulated transcripts, show [strong / moderate / weak] similarity in sets of regulated transcripts, and show [r] correlation in regulated gene expression, which is [substantially / somewhat / not at all] stronger than at forgetting. Overall, our results suggest that forgetting represents [decay / retrieval-failure / mixed mechanisms].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.