Temporal genomic profiling and whole-cell proteomic analyses were performed to characterize the dynamic molecular response of the metal-reducing bacterium Shewanella oneidensis MR-1 to an acute chromate shock. The complex dynamics of cellular processes demand the integration of methodologies that describe biological systems at the levels of regulation, gene and protein expression, and metabolite production. Genomic microarray analysis of the transcriptome dynamics of midexponential phase cells subjected to 1 mm potassium chromate (K(2)CrO(4)) at exposure time intervals of 5, 30, 60, and 90 min revealed 910 genes that were differentially expressed at one or more time points. Strongly induced genes included those encoding components of a TonB1 iron transport system (tonB1-exbB1-exbD1), hemin ATP-binding cassette transporters (hmuTUV), TonB-dependent receptors as well as sulfate transporters (cysP, cysW-2, and cysA-2), and enzymes involved in assimilative sulfur metabolism (cysC, cysN, cysD, cysH, cysI, and cysJ). Transcript levels for genes with annotated functions in DNA repair (lexA, recX, recA, recN, dinP, and umuD), cellular detoxification (so1756, so3585, and so3586), and two-component signal transduction systems (so2426) were also significantly up-regulated (p < 0.05) in Cr(VI)-exposed cells relative to untreated cells. By contrast, genes with functions linked to energy metabolism, particularly electron transport (e.g. so0902-03-04, mtrA, omcA, and omcB), showed dramatic temporal alterations in expression with the majority exhibiting repression. Differential proteomics based on multidimensional HPLC-MS/MS was used to complement the transcriptome data, resulting in comparable induction and repression patterns for a subset of corresponding proteins. In total, expression of 2,370 proteins were confidently verified with 624 (26%) of these annotated as hypothetical or conserved hypothetical proteins. The initial response of S. oneidensis to chromate shock appears to require a combination of different regulatory networks that involve genes with annotated functions in oxidative stress protection, detoxification, protein stress protection, iron and sulfur acquisition, and SOS-controlled DNA repair mechanisms.
The biological impact of 24-h ("chronic") chromium(VI) [Cr(VI) or chromate] exposure on Shewanella oneidensis MR-1 was assessed by analyzing cellular morphology as well as genome-wide differential gene and protein expression profiles. Cells challenged aerobically with an initial chromate concentration of 0.3 mM in complex growth medium were compared to untreated control cells grown in the absence of chromate. At the 24-h time point at which cells were harvested for transcriptome and proteome analyses, no residual Cr(VI) was detected in the culture supernatant, thus suggesting the complete uptake and/or reduction of this metal by cells. In contrast to the untreated control cells, Cr(VI)-exposed cells formed apparently aseptate, nonmotile filaments that tended to aggregate. Transcriptome profiling and mass spectrometry-based proteomic characterization revealed that the principal molecular response to 24-h Cr(VI) exposure was the induction of prophage-related genes and their encoded products as well as a number of functionally undefined hypothetical genes that were located within the integrated phage regions of the MR-1 genome. In addition, genes with annotated functions in DNA metabolism, cell division, biosynthesis and degradation of the murein (peptidoglycan) sacculus, membrane response, and general environmental stress protection were upregulated, while genes encoding chemotaxis, motility, and transport/binding proteins were largely repressed under conditions of 24-h chromate treatment.The metal oxyanion chromate (CrO 4 2Ϫ ) is a widespread environmental contaminant due to its prevalent use in industrial and defense applications such as tanning, electroplating, paint pigment manufacturing, stainless steel welding, and nuclear weapons production (25,26). The hexavalent form of chromium, Cr(VI), is highly soluble and toxic, with chronic exposure leading to mutagenesis and carcinogenesis. Cr(VI)-induced apoptosis, for example, was demonstrated in p53 human bronchoalveolar cells (46), and Cr(VI) exposure results in a spectrum of genomic damage in cultured cells including DNA single-strand and double-strand breaks, binding of amino acids and proteins to DNA, DNA interstrand crosslinks, and Cr-DNA adducts (11,27,28,43,47,53,59,64,65). Cr toxicity is also associated with the generation of reactive oxygen intermediates during the intracellular partial reduction of Cr(VI) to the unstable intermediate Cr(V) by various in vivo nonspecific reductants (e.g., glutathione, NADH, NADPH, and cysteine) or cellular one-electron reductases (16,27,50). The other most stable, common form of chromium, trivalent Cr(III), is considered less toxic than Cr(VI) because of its tendency to form insoluble hydrated Cr 3ϩ complexes, which cannot cross cell membranes. However, Cr(III) was shown to cause DNA damage and inhibit topoisomerase DNA relaxation activity in bacteria (40).The adverse biological impact of Cr(VI) is attributable to the cellular uptake process. Chromate is transported across eukaryotic and prokaryotic cellular membranes vi...
Proteome alterations in the metal-reducing bacterium Shewanella oneidensis MR-1 in response to different acute dose challenges (0.3, 0.5, or 1 mM) of the toxic metal chromate [Cr(VI)] were characterized with multidimensional HPLC-MS/MS. Proteome measurements were performed and compared on both quadrupole ion traps as well as linear trapping quadrupole mass spectrometers. We have found that the implementation of multidimensional liquid chromatography on-line with the rapid scanning, high throughput linear trapping quadrupole platform resulted in a dramatic increase in the number of measured peptides and, thus, the number of identified proteins. A total of 2406 functionally diverse, nonredundant proteins were identified in this study, representing a relatively deep proteome coverage for this organism. The core molecular response to chromate challenge under all three concentrations consisted predominantly of proteins with annotated functions in transport and binding (e.g., components of the TonB1 iron transport system, TonB-dependent receptors, and sulfate transporters) as well as a functionally undefined DNA-binding response regulator (SO2426) that might play a role in mediating metal stress responses. In addition, proteins annotated as a cytochrome c, a putative azoreductase, and various proteins involved in general stress protection were up-regulated at the higher Cr(VI) doses (0.5 and 1 mM) only. Proteins down-regulated in response to metal treatment were distributed across diverse functional categories, with energy metabolism proteins dominating. The results presented in this work demonstrate the dynamic dosage response of S. oneidensis to sub-toxic levels of chromate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.