For over a century, the structures and reactivities of strained organic compounds have captivated the chemical community. Whereas triple-bond-containing strained intermediates have been well studied, cyclic allenes have received far less attention. Additionally, studies of cyclic allenes that bear heteroatoms in the ring are scarce. We report an experimental and computational study of azacyclic allenes, which features syntheses of stable allene precursors, the mild generation and Diels-Alder trapping of the desired cyclic allenes, and explanations of the observed regio- and diastereoselectivities. Furthermore, we show that stereochemical information can be transferred from an enantioenriched silyl triflate starting material to a Diels-Alder cycloadduct by way of a stereochemically defined azacyclic allene intermediate. These studies demonstrate that heteroatom-containing cyclic allenes, despite previously being overlooked as valuable synthetic intermediates, may be harnessed for the construction of complex molecular scaffolds bearing multiple stereogenic centres.
Precise time trajectories and detailed reaction pathways of the Diels-Alder reaction were directly observed using accurate single-molecule detection on an in situ label-free single-molecule electrical detection platform. This study demonstrates the well-accepted concerted mechanism and clarifies the role of charge transfer complexes with endo or exo configurations on the reaction path. An unprecedented stepwise pathway was verified at high temperatures in a high-voltage electric field. Experiments and theoretical results revealed an electric field–catalyzed mechanism that shows the presence of a zwitterionic intermediate with one bond formation and variation of concerted and stepwise reactions by the strength of the electric field, thus establishing a previously unidentified approach for mechanistic control by electric field catalysis.
Strained cyclic allenes, first discovered in 1966 by Wittig and co‐workers, have recently emerged as valuable synthetic building blocks. Previous experimental investigations, and computations reported here, demonstrate that the Diels–Alder reactions of furans and pyrroles with 1,2‐cyclohexadiene and oxa‐ and azaheterocyclic analogs proceed with endo selectivity. This endo selectivity gives the adduct with the allylic saturated carbon of the cyclic allene endo to the diene carbons. The selectivity is very general and useful in synthetic applications. Our computational study establishes the origins of this endo selectivity. We analyze the helical frontier molecular orbitals of strained cyclic allenes and show how secondary orbital and electrostatic effects influence stereoselectivity. The LUMO of carbon‐3 of the allene (C‐3 is not involved in primary orbital interactions) interacts in a stabilizing fashion with the HOMO of the diene in such a way that the carbon of the cyclic allene attached to C‐1 favors the endo position in the transition state. The furan LUMO, allene HOMO interaction reinforces this preference. These mechanistic studies are expected to prompt the further use of long‐avoided strained cyclic allenes in chemical synthesis.
A series of 11 novel 3‐aryl‐2‐phenyl‐2,3‐dihydro‐4H‐1,3‐benzothiazin‐4‐ones was prepared at room temperature by T3P‐mediated cyclization of N‐aryl‐C‐phenyl imines with thiosalicylic acid. This provides simple and ready access to N‐aryl compounds in this family, which have been generally difficult to prepare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.