The Laboratory for Molecular Diagnosis of Inherited Eye Disease at the University of Texas in Houston has thus far received DNA samples from 170 families with a diagnosis of adRP from the eyeGENE Network. Disease-causing mutations in autosomal genes were identified in 48% (81/170) of these families while mutations in X-linked genes accounted for an additional 4% (7/170). Of the 55 distinct mutations detected, 19 (33%) have not been previously reported. All diagnostic results were returned by eyeGENE to participating patients via their referring clinician. These genotyped samples along with their corresponding phenotypic information are also available to researchers who may request access to them for further study of these ophthalmic disorders. (ClinicalTrials.gov number, NCT00378742.).
Molecular variant interpretation lacks disease gene‐specific cohorts for determining variant enrichment in disease versus healthy populations. To address the molecular etiology of retinal degeneration, specifically the PRPH2‐related retinopathies, we reviewed genotype and phenotype information obtained from 187 eyeGENE® participants from 161 families. Clinical details were provided by referring clinicians participating in the eyeGENE® Network. The cohort was sequenced for variants in PRPH2. Variant complementary DNA clusters and cohort frequency were compared to variants in public databases to help us to determine pathogenicity by current American College of Medical Genetics and Genomics/Association for Molecular Pathology interpretation criteria. The most frequent variant was c.828+3A>T, which affected 28 families (17.4%), and 25 of 79 (31.64%) variants were novel. The majority of missense variants clustered in the D2 intracellular loop of the peripherin‐2 protein, constituting a hotspot. Disease enrichment was noted for 23 (29.1%) of the variants. Hotspot and disease‐enrichment evidence modified variant classification for 16.5% of variants. The missense allele p.Arg172Trp was associated with a younger age of onset. To the best of our knowledge, this is the largest patient cohort review of PRPH2‐related retinopathy. Large disease gene‐specific cohorts permit gene modeling for hotspot and disease‐enrichment analysis, providing novel variant classification evidence, including for novel missense variants.
Genetic testing in a multisite clinical trial network for inherited eye conditions is described in this retrospective review of data collected through eyeGENE ® , the National Ophthalmic Disease Genotyping and Phenotyping Network. Participants in eyeGENE were enrolled through a network of clinical providers throughout the United States and Canada. Blood samples and clinical data were collected to establish a phenotype:genotype database, biorepository, and patient registry. Data and samples are available for research use, and participants are provided results of clinical genetic testing. eyeGENE utilized a unique, distributed clinical trial design to enroll 6,403 participants from 5,385 families diagnosed with over 30 different inherited eye conditions. The most common diagnoses given for participants were retinitis pigmentosa (RP), Stargardt disease, and choroideremia. Pathogenic variants were most frequently reported in ABCA4 (37%), USH2A (7%), RPGR (6%), CHM (5%), and PRPH2 (3%). Among the 5,552 participants with genetic testing, at least one pathogenic or likely pathogenic variant was observed in 3,448 participants (62.1%), and variants of uncertain significance in 1,712 participants (30.8%). Ten genes represent 68% of all pathogenic and likely pathogenic variants in eyeGENE. Cross-referencing current gene therapy clinical trials, over a thousand participants may be eligible, based on pathogenic variants in genes targeted by those therapies. This article is the first summary of genetic testing from thousands of participants tested through eyeGENE, including reports from 5,552 individuals. eyeGENE provides a launching point for inherited eye research, connects researchers with potential future study participants, and provides a valuable resource to the vision community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.