Cognitive tests have traditionally resorted to standardizing testing materials in the name of equality and because of the onerous nature of creating test items. This approach ignores participants' diverse language experiences that potentially significantly affect testing outcomes. Here, we seek to explain our prior finding of significant performance differences on two cognitive tests (reading span and SPiN) between clusters of participants based on their media consumption. Here, we model the language contained in these media sources using an LSTM trained on corpora of each cluster's media sources to predict target words. We also model semantic similarity of test items with each cluster's corpus using skip-thought vectors. We find robust, significant correlations between performance on the SPiN test and the LSTMs and skip-thought models we present here, but not the reading span test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.