BACKGROUND Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe, disproportionately affecting New York City. A comprehensive, integrative autopsy series that advances the mechanistic discussion surrounding this disease process is still lacking. METHODS Autopsies were performed at the Mount Sinai Hospital on 67 COVID-19 positive patients and data from the clinical records were obtained from the Mount Sinai Data Warehouse. The experimental design included a comprehensive microscopic examination carried out by a team of expert pathologists, along with transmission electron microscopy, immunohistochemistry, RNA in situ hybridization, as well as immunology and serology assays. RESULTS Laboratory results of our COVID-19 cohort show elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8 and TNFα. Autopsies revealed large pulmonary emboli in four cases. We report microthrombi in multiple organ systems including the brain, as well as conspicuous hemophagocytosis and a secondary hemophagocytic lymphohistiocytosis-like syndrome in many of our patients. We provide electron microscopic, immunofluorescent and immunohistochemical evidence of the presence of the virus and the ACE2 receptor in our samples. CONCLUSIONS We report a comprehensive autopsy series of 67 COVID-19 positive patients revealing that this disease, so far conceptualized as a primarily respiratory viral illness, also causes endothelial dysfunction, a hypercoagulable state, and an imbalance of both the innate and adaptive immune responses. Novel findings reported here include an endothelial phenotype of ACE2 in selected organs, which correlates with clotting abnormalities and thrombotic microangiopathy, addressing the prominent coagulopathy and neuropsychiatric symptoms. Another original observation is that of macrophage activation syndrome, with hemophagocytosis and a hemophagocytic lymphohistiocytosis-like disorder, underlying the microangiopathy and excessive cytokine release. We discuss the involvement of critical regulatory pathways.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe and disproportionately affected New York City between March and May 2020. Here, we report on the first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City. Autopsies revealed large pulmonary emboli in six cases. Diffuse alveolar damage was present in over 90% of cases. We also report microthrombi in multiple organ systems including the brain, as well as hemophagocytosis. We additionally provide electron microscopic evidence of the presence of the virus in our samples. Laboratory results of our COVID-19 cohort disclose elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8, and TNFα. Our autopsy series of COVID-19-positive patients reveals that this disease, often conceptualized as a primarily respiratory viral illness, has widespread effects in the body including hypercoagulability, a hyperinflammatory state, and endothelial dysfunction. Targeting of these multisystemic pathways could lead to new treatment avenues as well as combination therapies against SARS-CoV-2 infection.
Background: Glioblastoma (GBM) is a highly malignant brain neoplasm with poor survival. Despite its aggressive nature, metastatic spread of GBM is identified only rarely. While the molecular alterations associated with GBM and its subtypes are well-described, there remains a gap in understanding which alterations may predispose towards metastasis. In this report, we present a case of GBM with multi-organ metastases and discuss its genomic alterations. Case presentation: A 74-year-old woman was diagnosed with left occipital glioblastoma (IDH-wildtype, MGMTunmethylated), for which she underwent resection, standard chemoradiation, and then stereotactic radiosurgery (SRS) for local recurrence. One month after SRS, work-up for a pathologic hip fracture revealed a left breast mass, lytic lesions involving pelvic bones, and multiple pulmonary and hepatic lesions. Biopsies of the breast and bone lesions both demonstrated metastatic IDH-wildtype GBM. For worsening neurologic symptoms, the patient underwent debulking of a large right temporal lobe recurrence and expired shortly thereafter. Autopsy confirmed metastatic GBM in multiple systemic sites, including bilateral lungs, heart, liver, thyroid, left breast, small bowel, omentum, peritoneal surfaces, visceral surfaces, left pelvic bone, and hilar lymph nodes. Targeted sequencing was performed on tissue samples obtained pre-and postmortem, as well as on cell cultures and an orthotopic mouse xenograft derived from premortem surgical specimens. A BRCA1 mutation (p.I571T) was the only variant found in common among the primary, recurrence, and metastatic specimens, suggesting its likely status as an early driver mutation. Multiple subclonal ARID1A mutations, which promote genomic instability through impairment of DNA mismatch repair, were identified only in the recurrence. Mutational spectrum analysis demonstrated a high percentage of C:G to T:A transitions in the post-treatment samples but not in the primary tumor. Conclusion: This case report examines a rare case of widely metastatic IDH-wildtype GBM with a clonal somatic mutation in BRCA1. Post-treatment recurrent tumor in the brain and in multiple systemic organs exhibited evidence of acquired DNA mismatch repair deficiency, which may be explained by functional loss of ARID1A. We identify a potential role for immune checkpoint and PARP inhibitors in the treatment of metastatic GBM.
Purpose Chemical fixatives such as formalin form cross‐links between proteins and affect the relaxation times and diffusion properties of tissue. These fixation‐induced changes likely also affect myelin density measurements produced by quantitative magnetization transfer and myelin water imaging. In this work, we evaluate these myelin‐sensitive MRI methods for fixation‐induced biases. Methods We perform quantitative magnetization transfer, myelin water imaging, and deuterium oxide‐exchanged zero TE imaging on unfixed human spinal cord tissue at 9.4 Tesla and repeat these measurements after 1 day and 31 days of formalin fixation. Results The quantitative magnetization‐transfer bound pool fraction increased by 30.7% ± 21.1% after 1 day of fixation and by 42.6% ± 33.9% after 31 days of fixation. Myelin water fraction increased by 39.7% ± 15.5% and 37.0% ± 15.9% at these same time points, and mean T2 of the myelin water pool nearly doubled. Reference‐normalized deuterium oxide‐exchanged zero TE signal intensity increased by 8.17% ± 6.03% after 31 days of fixation but did not change significantly after 1 day of fixation. After fixation, specimen cross‐sectional area decreased by approximately 5%; after correction for shrinkage, changes in deuterium oxide‐exchanged zero TE intensity were nearly eliminated. Conclusion Bound pool fraction and myelin water fraction are significantly increased by formalin fixation, whereas deuterium oxide‐exchanged zero TE intensity is minimally affected. Changes in quantitative magnetization transfer and myelin water imaging may be due in part to delamination and formation of vacuoles in the myelin sheath. Deuterium oxide‐exchanged signal intensity may be altered by fixation‐induced changes in myelin lipid solid‐state 1H T1. We urge caution in the comparison of these measurements across subjects or specimens in different states, especially unfixed versus fixed tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.