The present studies were undertaken to evaluate the in vitro gel stability of the hydrogels alginate and agarose. Gel strength (of alginate and agarose) and protein diffusion (of alginate only) were shown t o correlate with gel stability and to be useful techniques to monitor gel stability over time. The gel strengths of alginate and agarose were followed for a 90-day period using gel strength as a measure of gel stability. The gel strength of agarose diminished in the presence of cells because the cells likely interfered with the hydrogen bond formation required for agarose gelation. In the presence of cells, the gel strength of agarose decreased by an average of 25% from time 0 to 60 days, thereafter maintaining that value to 90 days. The gel strength of calcium-or barium-crosslinked alginate decreased over 90 days, with an equilibrium gel strength being achieved after 30 days. The presence of cells did not further decrease alginate gel strength. The gel strengths of calcium-and barium-crosslinked alginates were similar at 60 days-350 ? 20 g and 300 ? 60 g, respectively-indicating equivalence in their stability. The stability of calcium-crosslinked sodium alginate gels over a 60-day time period was monitored by diffusion of proteins ranging in molecular weight from 14.5 t o 155 kD. From these diffusion measurements, the average pore size of the calcium-crosslinked alginate gels was estimated, using ,a semi-empirical model, t o increase from -176 to 289 A over a period of 60 days.
Most epidemiologic studies of puberty have only 1 source of pubertal development information (maternal, self or clinical). Interpretation of results across studies requires data on reliability and validity across sources.
Poly(vinyl alcohol) (PVA) foams were used as scaffolds in hollow fiber membrane-based cell encapsulation devices. The surrounding permselective membrane serves as an immunoisolation barrier while allowing metabolites and other small molecules to be freely transported. The internal matrix defines the microenvironment for the encapsulated cells. PC12 cell-containing devices represent one possible strategy for safe transplantation of dopamine-secreting cells for the treatment of dopamine-deficient diseases such as Parkinson's disease. PC12 cells--a dopamine-secreting cell line--were encapsulated with PVA foam as a matrix material in the lumen of these hollow fibers. In this work, we demonstrate the presence of the PVA matrix increased the catecholamine secretion efficiency of the cells as compared to devices containing a chitosan matrix. Devices were implanted in vivo into rodent striatum and device output of catecholamines was measured preimplant and post-explant. Evoked stores of dopamine remained constant (preimplant vs explant) for devices encapsulated with the foam matrix and increased with devices encapsulated with chitosan matrix. Cell proliferation within devices was inhibited in the presence of the foam matrix. Cell viability and distribution was significantly improved with the inclusion of the foam matrix in both in vitro and in vivo studies. In comparison to chitosan--a typical matrix material for PC12 cells--addition of a foam-type matrix altered the encapsulated cell microenvironment and resulted in more efficient secretion of catecholamines and improved distribution within the device resulting in smaller necrotic regions and a lower rate of cell proliferation.
Cell therapy-use of cells to deliver active factors-is an emerging technique in treatment of neurodegenerative disease. Successful devices maintain cell viability and functionality over extended implant periods. Use of dividing cell lines to deliver therapeutic factors has been studied extensively. One emerging issue is the tendency of cells to continue proliferation within the intracapsular environment-potentially outstripping nutrient supply. This work presents a method of controlling proliferation and delivering therapeutic molecules within a dose range. The method entails encapsulation into a hollow fiber device of discrete numbers of cell-containing microcarriers. Proliferation control is attained by embedding cell-containing microcarriers in nonmitogenic hydrogels. PC-12 cells secreting L-dopa and dopamine was the model cell line tested. Feasibility of the method in controlling growth of normally rapidly dividing cells in the intracapsular environment was demonstrated in vitro and in vivo. Control nonmicrocarrier PC-12 cell devices had approximately fourfold greater expansion in cell number compared to experimental microcarrier-containing devices over 4 weeks in vitro and in vivo after implant into rat striatum. Ability to control dose released over a several-fold range was demonstrated with encapsulated PC-12 cells delivering neurotransmitters and C2C12 mouse myoblast cells delivering neurotrophic factors (CNTF).
BackgroundYounger age at onset of breast development, which has been declining in recent decades, is associated with increased breast cancer risk independent of age at menarche. Given the need to study the drivers of these trends, it is essential to validate methods to assess breast onset that can be used in large-scale studies when direct clinical assessment of breast onset is not feasible.MethodsBreast development is usually measured by Tanner stages (TSs), assessed either by physical examination or by mother’s report using a picture-based Sexual Maturation Scale (SMS). As an alternative, a mother-reported Pubertal Development Scale (PDS) without pictures has been used in some studies. We compared agreement of SMS and PDS with each other (n = 1022) and the accuracy of PDS with clinical TS as a gold standard for the subset of girls with this measure (n = 282) using the LEGACY cohort. We further compared prediction of breast onset using ROC curves and tested whether adding urinary estrone 1-glucuronide (E1G) improved the AUC.ResultsThe agreement of PDS with SMS was high (kappa = 0.80). The sensitivity of PDS vs clinical TS was 86.6%. The AUCs for PDS alone and SMS alone were 0.88 and 0.79, respectively. Including E1G concentrations improved the AUC for both methods (0.91 and 0.86 for PDS and SMS, respectively).ConclusionsThe PDS without pictures is a highly accurate, sensitive, and specific method for assessing breast onset, especially in settings where clinical TS is not feasible. In addition, it is comparable to SMS methods with pictures and thus easier to implement in large-scale studies, particularly phone-based interviews where pictures may not be available. Urinary E1G can improve accuracy over than PDS or SMS alone.Electronic supplementary materialThe online version of this article (10.1186/s13058-018-0943-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.