Short‐ to medium‐range flood forecasts are central to predicting and mitigating the impact of flooding across the world. However, producing reliable forecasts and reducing forecast uncertainties remains challenging, especially in poorly gauged river basins. The growing availability of synthetic aperture radar (SAR)‐derived flood image databases (e.g., generated from SAR sensors such as Envisat advanced synthetic aperture radar) provides opportunities to improve flood forecast quality. This study contributes to the development of more accurate global and near real‐time remote sensing‐based flood forecasting services to support flood management. We take advantage of recent algorithms for efficient and automatic delineation of flood extent using SAR images and demonstrate that near real‐time sequential assimilation of SAR‐derived flood extents can substantially improve flood forecasts. A case study based on four flood events of the River Severn (United Kingdom) is presented. The forecasting system comprises the SUPERFLEX hydrological model and the Lisflood‐FP hydraulic model. SAR images are assimilated using a particle filter. To quantify observation uncertainty as part of data assimilation, we use an image processing approach that assigns each pixel a probability of being flooded based on its backscatter values. Empirical results show that the sequential assimilation of SAR‐derived flood extent maps leads to a substantial improvement in water level forecasts. Forecast errors are reduced by as much as 50% at the assimilation time step, and improvements persist over subsequent time steps for 24 to 48 hr. The proposed approach holds promise for improving flood forecasts at locations where observed data availability is limited but satellite coverage exists.
Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models, Journal of Hydrology (2015), doi: http://dx. AbstractThis paper investigates the challenge of representing structural differences in river channel crosssection geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning's coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.