Emergence of androgen-independent cancer cells during androgen deprivation therapy presents a significant challenge to successful treatment outcomes in prostate cancer. Elucidating the role of androgen deprivation in the transition from an androgen-dependent to an androgen-independent state may enable the development of more effective therapeutic strategies against prostate cancer. Herein, we describe an in vitro model for assessing the effects of continuous androgen-deprivation on prostate cancer cells (LNCaP) with respect to the expression of two prostate-specific markers: the androgen receptor (AR) and prostate-specific membrane antigen (PSMA). Compared with androgen-containing normal growth medium, androgen-deprived medium apparently induced the concomitant downregulation of AR and PSMA over time. Decreased protein levels were confirmed by fluorescence imaging, western blotting and enzymatic activity studies. In contrast to the current understanding of AR and PSMA in prostate cancer progression, our data demonstrated that androgen-deprivation induced a decrease in AR and PSMA levels in androgen-sensitive LNCaP cells, which may be associated with the development of more aggressive disease-state following androgen deprivation therapy.
Histone methylation plays an important regulatory role in chromatin restructuring and RNA transcription. Arginine methylation that is enzymatically catalyzed by the family of protein arginine methyltransferases (PRMTs) can either activate or repress gene expression depending on cellular contexts. Given the strong correlation of PRMTs with pathophysiology, great interest is seen in understanding molecular mechanisms of PRMTs in diseases and in developing potent PRMT inhibitors. Herein, we reviewed key research advances in the study of biochemical mechanisms of PRMT catalysis and their relevance to cell biology. We highlighted how a random binary, ordered ternary kinetic model for PRMT1 catalysis reconciles the literature reports and endorses a distributive mechanism that the enzyme active site utilizes for multiple turnovers of arginine methylation. We discussed the impacts of histone arginine methylation and its biochemical interplays with other key epigenetic marks. Challenges in developing small-molecule PRMT inhibitors were also discussed.
Chemical modifications on the DNA and nucleosomal histones tightly control the gene transcription program in eukaryotic cells. The “histone code” hypothesis proposes that the frequency, combination, and location of post-translational modifications (PTMs) on the core histones compose a complex network of epigenetic regulation. Currently, there are at least 23 different types and over 450 histone PTMs discovered, and the PTMs on lysine and arginine residues account for a crucial part of the histone code. Although significant progress has been achieved in recent years, the molecular basis for the histone code is far from being fully understood. In this study, we investigated how naturally occurring N-terminal acetylation and PTMs on histone H4 lysine-5 (H4K5) affect arginine-3 methylation catalyzed by both type I and type II PRMTs at the biochemical level. Our studies found that acylations of H4K5 resulted in decreased arginine methylation by PRMT1, PRMT3, and PRMT8. In contrast, PRMT5 exhibits increased arginine methylation upon H4K5 acetylation, propionylation, and crotonylation, but not upon H4K5 methylation, butyrylation, or 2-hydroxyisobutyrylation. Methylation of H4K5 did not affect arginine methylation by PRMT1 or PRMT5. There was a small increase in arginine methylation by PRMT8. Strikingly, a marked increase in arginine methylation was observed for PRMT3. Finally, N-terminal acetylation reduced arginine methylation by PRMT3, but had little influence on PRMT1, 5, and 8 activity. These results together highlight the underlying mechanistic differences in substrate recognition among different PRMTs and pay the way for the elucidation of the complex interplays of histone modifications.
Protein post-translational modifications (PTMs) in eukaryotic cells play important roles in the regulation of functionalities of the proteome and in the tempo-spatial control of cellular processes. Most PTMs enact their regulatory functions by affecting the biochemical properties of substrate proteins such as altering structural conformation, protein–protein interaction, and protein–nucleic acid interaction. Amid various PTMs, arginine methylation is widespread in all eukaryotic organisms, from yeasts to humans. Arginine methylation in many situations can drastically or subtly affect the interactions of substrate proteins with their partnering proteins or nucleic acids, thus impacting major cellular programs. Recently, arginine methylation has become an important regulator of the formation of membrane-less organelles inside cells, a phenomenon of liquid–liquid phase separation (LLPS), through altering π-cation interactions. Another unique feature of arginine methylation lies in its impact on cellular physiology through its downstream amino acid product, asymmetric dimethylarginine (ADMA). Accumulation of ADMA in cells and in the circulating bloodstream is connected with endothelial dysfunction and a variety of syndromes of cardiovascular diseases. Herein, we review the current knowledge and understanding of protein arginine methylation in regards to its canonical function in direct protein regulation, as well as the biological axis of protein arginine methylation and ADMA biology.
BACKGROUND The enzyme-biomarker prostate-specific membrane antigen (PSMA) is an active target for imaging and therapeutic applications for prostate cancer. The internalization of PSMA has been shown to vary with inhibitors’ mode of binding: irreversible, slowly reversible and reversible. METHODS In the present study, PSMA-targeted clickable derivatives of an irreversible phosphoramidate inhibitor DBCO-PEG4-CTT-54 (IC50 = 1.0 nM) and a slowly reversible phosphate inhibitor, DBCO-PEG4-CTT-54.2 (IC50 = 6.6 nM) were clicked to 99mTc(CO)3-DPA-azide to assemble a PSMA-targeted SPECT agent. The selectivity, percent uptake, and internalization of these PSMA-targeted SPECT agents were evaluated in PSMA-positive and PSMA-negative cells. RESULTS In vitro studies demonstrated that PSMA-targeted SPECT agents exhibited selective cellular uptake in the PSMA-positive LNCaP cells compared to PSMA-negative PC3 cells. More importantly, it was found that 99mTc(CO)3-DPA-DBCO-PEG4-CTT-54 based on an irreversible PSMA inhibitor core, exhibited greater uptake and internalization than 99mTc(CO)3-DPA-DBCO-PEG4-CTT-54.2 constructed from a slowly-reversible PSMA inhibitor core. CONCLUSIONS We have demonstrated that a PSMA-targeted SPECT agent can be assembled efficiently using copper-less click chemistry. In addition, we demonstrated that mode of binding has an effect on internalization and percent uptake of PSMA-targeted SPECT agents; with the irreversible targeting agent demonstrating superior uptake and internalization in PSMA+ cells. The approach demonstrated in this work now supports a modular approach for the assembly of PSMA-targeted imaging and therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.