SUMMARY The primate APOBEC3 gene locus encodes a family of proteins (APOBEC3A-H) with various antiviral and anti-retroelement activities. Here, we trace the evolution of APOBEC3H activity in hominoids to identify a human-specific loss of APOBEC3H antiviral activity. Reconstruction of the predicted ancestral human APOBEC3H protein shows that human ancestors encoded a stable form of this protein with potent antiviral activity. Subsequently, the antiviral activity of APOBEC3H was lost via two polymorphisms that are each independently sufficient to destabilize the protein. Nonetheless, an APOBEC3H allele that encodes a stably expressed protein is still maintained at high frequency, primarily in African populations. This stable APOBEC3H protein has potent activity against retroviruses and retrotransposons, including HIV and LINE-1 elements. The surprising finding that APOBEC3H antiviral activity has been lost in the majority of humans may have important consequences for our susceptibility to retroviral infections as well as ongoing retroelement proliferation in the human genome.
The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP’s antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP’s ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity.
S-prenylation is an important lipid modification that targets proteins to membranes for cell signaling and vesicle trafficking in eukaryotes. As S-prenylated proteins are often key effectors for oncogenesis, congenital disorders, and microbial pathogenesis, robust proteomic methods are still needed to biochemically characterize these lipidated proteins in specific cell types and disease states. Here, we report that bioorthogonal proteomics of macrophages with an improved alkyne-isoprenoid chemical reporter enables large-scale profiling of prenylated proteins, as well as the discovery of unannotated lipidated proteins such as isoform-specific S-farnesylation of zinc-finger antiviral protein (ZAP). Notably, S-farnesylation was crucial for targeting the long-isoform of ZAP (ZAPL/PARP-13.1/zc3hav1) to endolysosomes and enhancing the antiviral activity of this immune effector. These studies demonstrate the utility of isoprenoid chemical reporters for proteomic analysis of prenylated proteins and reveal a role for protein prenylation in host defense against viral infections.
The APOBEC3H gene is polymorphic in humans, with four major population-dependent haplotypes that encode proteins with different levels of antiviral activity. Haplotype II, present most frequently in African populations, encodes the most stable protein and is most active against human immunodeficiency virus type 1 (HIV-1). In contrast to human APOBEC3G, which can be completely counteracted by HIV-1 Vif, the protein encoded by APOBEC3H haplotype II is only partially sensitive to Vif, while the protein encoded by APOBEC3H haplotype I is completely resistant to HIV-1 Vif. We mapped a residue on APOBEC3H that determines this partial Vif sensitivity. However, it is unclear how HIV-1 can replicate in vivo without the ability to neutralize APOBEC3H antiviral activity. In order to directly address this question, we cloned vif genes from HIV-1-infected individuals with different APOBEC3H genotypes and tested them for their ability to inhibit human APOBEC3H. We found that while the APOBEC3H genotype of infected individuals significantly influences the activity of Vif encoded by their virus, none of the Vif variants tested can completely neutralize APOBEC3H as well as they neutralize APOBEC3G. Consistent with this genetic result, APOBEC3H protein expression in human peripheral blood mononuclear cells was below our limit of detection using newly developed antibodies against the endogenous protein. These results demonstrate that human APOBEC3H is not as strong of a selective force for current HIV-1 infections as human APOBEC3G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.