The mammalian gut contains a complex assembly of commensal microbes termed microbiota. Although much has been learned about the role of these microbes in health, the mechanisms underlying these functions are ill defined. We have recently shown that the mammalian gut contains thousands of small molecules, most of which are currently unidentified. Therefore, we hypothesized that these molecules function as chemical cues used by hosts and microbes during their interactions in health and disease. Thus, a search was initiated to identify molecules produced by the microbiota that are sensed by pathogens. We found that a secreted molecule produced by clostridia acts as a strong repressor of Salmonella virulence, obliterating expression of the Salmonella pathogenicity island 1 as well as host cell invasion. It has been known for decades that the microbiota protects its hosts from invading pathogens, and these data suggest that chemical sensing may be involved in this phenomenon. Further investigations should reveal the exact biological role of this molecule as well as its therapeutic potential.
Introduction The LumiraDx severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen test, which uses a high-sensitivity, microfluidic immunoassay to detect the nucleocapsid protein of SARS-CoV-2, was evaluated for diagnosing acute coronavirus disease 2019 (COVID-19) in adults and children across point-of-care settings (NCT04557046). Methods Two paired anterior nasal swabs or two paired nasopharyngeal swabs were collected from each participant. Swabs were tested by the LumiraDx SARS-CoV-2 antigen test and compared with real-time polymerase chain reaction (rt-PCR; Roche cobas 6800 platform). Sensitivity, specificity and likelihood ratios were calculated. Results were stratified on the basis of gender, age, duration of symptoms, and rt-PCR cycle threshold. Results Out of the 512 participants, aged 0–90 years, of this prospective validation study, 414 (81%) were symptomatic for COVID-19 and 123 (24%) swabs were positive for SARS-CoV-2 based on rt-PCR testing. Compared with rt-PCR, the 12-min nasal swab test had 97.6% sensitivity and 96.6% specificity, and nasopharyngeal swab had 97.5% sensitivity and 97.7% specificity, within 12 days of symptom onset, representing the period of infectivity. All (100%) samples detected within 33 rt-PCR cycles were also identified using the antigen test. Results were consistent across age and gender. The user error rate of the test system when used by minimally trained operators was 0.7% (95% confidence interval [CI] 0.1–3.7%). Conclusion The rapid, high-sensitivity assay using nasopharyngeal or anterior nasal sampling may offer significant improvements for diagnosing acute SARS-CoV-2 infection in clinic- and community-based settings. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-021-00413-x.
We conducted an observational study in Malawi to understand the patient impact of implementing point-of-care early infant diagnosis (POC EID). Antiretroviral treatment initiation rates were significantly improved with the implementation of same-day POC EID testing compared with referred, longer-turnaround laboratory-based testing.
Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella and bile that are relevant to disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.