In this study, carbon fiber-reinforced polymer (CFRP) composites with three different fiber orientation angles (M1: [0°/90°] s , M2: [+ 45°/− 45°] s , and M3: [0°/45°/90°/− 45°] s) were drilled (with and without pilot holes) on an abrasive water jet (AWJ) machine and the effect of the drilling parameters on the kerf angle (K) and roundness error (Re) of selected holes was investigated to determine quality characteristics. The first aim of the study was the single-objective optimization of drilling parameters for minimum K and Re individually. The second aim was the multi-objective optimization of drilling parameters for the simultaneous minimization of both K and Re. The Taguchi method was applied for single-objective optimization, while all steps of the Taguchi-based gray relational analysis were used for multi-objective optimization. Drilling experiments were performed using the L16 (4 4) orthogonal array. Four levels each for water pressure, stand-off distance, traverse feed rate, and hole diameter were selected as control factors. Analysis of experimental findings revealed that pilot drilling improved the kerf angle of the hole by 12.4% and the roundness error by 22.87%. Minimum kerf angle and roundness error were realized in the AWJ drilling of the M3 CFRP. The most effective parameter on kerf angle and roundness error in AWJ drilling of M1, M2, and M3 CFRP materials was water pressure (80.6%, 76.9%, and 73.8%, respectively), followed by stand-off distance (11.7%, 12.0%, and 13.5%),while other drilling parameters remained below 10%. The statistical evaluation and optimization results in this study can contribute to the evaluation of the AWJ machinability of CFRP composites.
Purpose
The aim of this paper is to optimize the machining parameters to obtain the smallest average surface roughness values during drilling of the carbon fiber-reinforced polymer (CFRP) composite material with abrasive water jet (AWJ) and analyze the damage of the delamination.
Design/methodology/approach
CFRP composite material had been fabricated having fiber orientations frequently used in the aerospace industry (0°/45°/90°/−45°). Three different stand-off distances (1, 2 and 3 mm), three different water pressures (1,800, 2,800 and 3,800 bar) and three different hole diameters (4, 8 and 12 mm) were selected as processing parameters. The average surface roughness values were obtained, and delamination damage was then analyzed using Taguchi optimization. Drilling experiments were performed using the Taguchi L27 orthogonal array via Minitab 17 software. The signal/noise ratio was taken into account in the evaluation of the test results. Using the Taguchi method, the control factors giving the mean surface roughness values were determined. Analysis of variance was performed using the experimental results, and the effect levels of the control factors on the average surface roughness were found.
Findings
It was found that water pressure and hole diameter had a higher effect on average surface roughness, while water pressure and stand-off distance were effective on delamination.
Practical implications
Owing to their excellent thermal and mechanical properties, the CFRP composite materials show greater potential for their applications in aircraft and aerospace industry.
Originality/value
The novel approach is to reduce cost and spent time using Taguchi optimization as a result of AWJ drilling the material in this fiber orientation ([0°/45°/90°/−45°]s, which is often used in the aerospace industry).
The aim of this study was to optimize machining parameters to obtain the smallest average surface roughness (Ra) and flank wear (Vb) values as a result of the surface milling of a nickel-titanium (NiTi) shape memory alloy (SMA) with uncoated cutting tools with different nose radius (rε) under dry cutting conditions. Tungsten carbide cutting tools with different rε (0.4 mm and 0.8 mm) were used in milling operations. The milling process was performed as lateral/surface cutting at three different cutting speeds (Vc) (20, 35 and 50 m/min), feed rates (fz) (0.03, 0.07 and 0.14 mm/tooth) and a constant axial cutting depth (0.7 mm). The effects of machining parameters in milling experiments were investigated based on the Taguchi L18 (21 × 32) orthogonal sequence, and the data obtained were analyzed using the Minitab 17 software. To determine the effects of processing parameters on Ra and Vb, analysis of variance (ANOVA) was used. The analysis results reveal that the dominant factor affecting the Ra is the cutting tool rε, while the main factor affecting Vb is the fz. Since the predicted values and measured values are very close to each other, it can be said that optimization is correct according to the validation test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.