In this paper, the geometry of curves is discussed based on the Caputo fractional derivative in the Lorentz plane. Firstly, the tangent vector of a spacelike plane curve is defined in terms of the fractional derivative. Then, by considering a spacelike curve in the Lorentz plane, the arc length and fractional ordered frame of this curve are obtained. Later, the curvature and Frenet-Serret formulas are found for this fractional ordered frame. Finally, the relation between the fractional curvature and classical curvature of a spacelike plane curve is obtained. In the last part of the study, considering the timelike plane curve in the Lorentz plane, new results are obtained with the method in the previous section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.