Background: Calorie restriction (CR) during daily nutrition has been shown to affect the prognosis of many chronic diseases such as metabolic syndrome, diabetes, and aging. As an alternative nutrition model, prolonged intermittent fasting (PF) in humans is defined by the absence of food for more than 12 h. In our previous human studies, CR and PF models were compared and it was concluded that the two models might have differences in signal transduction mechanisms. We have investigated the effects of these models on neurons at the molecular level in this study. Methods: Neurons (SH-SY5Y) were incubated with normal medium (N), calorie-restricted medium (CR), fasting medium (PF), and glucose-free medium (G0) for 16 h. Simultaneously, ketone (beta-hydroxybutyrate; bOHB) was added to other experiment flasks containing the same media. Concentrations of lactate, lactate dehydrogenase (LDH), bOHB, and glucose were measured to demonstrate the changes in the energy metabolism together with the mitochondrial functions of cells. Citrate synthase activity and flow cytometric mitochondrial functions were investigated. Results: At the end of incubations, lactate and LDH levels were decreased and mitochondrial activity was increased in all ketone-added groups (P < .01) regardless of the glucose concentration in the environment. In the fasting model, these differences were more prominent. Conclusion: Our results demonstrated that neurons use ketones regardless of the amount of glucose, and bOHB-treated cells had positive changes in mitochondrial function. We conclude that the presence of bOHB might reverse neuron damage and that exogenous ketone treatment may be beneficial in the treatment of neurological diseases in the future.
Objectives Peroxisome proliferator activated receptor gamma (PPARγ) agonists used for the treatment of Diabetes Mellitus (DM), has important roles on the regulation of metabolism including ketogenesis in fasting and low glucose states. Recently PPARγ was proven to have anti-oxidant and anti-inflammatory effects on neuronal cells. Methods In the present study, effects of pioglitazone (PPARγ agonist) on cell survival, energy metabolism and mitochondrial functions were investigated in glucose deprived fasting model applied SH-SY5Y (ATCC/CRL 2266) cell lines. Before and after pioglitazone treatment; energy metabolites (glucose, lactate, ketone (βOHB), lactate dehydrogenase activity), mitochondrial citrate synthase activity and cell viability were investigated. Results and Conclusions PPARγ agonist addition to glucose deprived, ketone added neurons provided positive improvements in energy metabolites (p<0.01), mitochondrial functions (p<0.001) and survival rates (p<0.01). Changes in mitochondrial citrate synthase activity, lactate and LDH levels of neuronal cells treated with PPARγ agonist have not been previously shown. Our results suggest, pioglitazone as an effective alternative for the treatment of neurodegenerative diseases especially with the presence of ketone bodies. By clarifying the mechanisms of PPARγ agonists, a great contribution will be made to the treatment of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.