Episodic acidification (pH <5) of estuarine tributaries caused by the oxidation of sulfidic floodplain sediments is widespread in eastern Australia. Drainage and flood mitigation works promote oxidation and the export of sulfuric acid and dissolved aluminium and iron into streams. This paper examines the acidification of a tidal reach on the Richmond River, New South Wales. Acid discharge is controlled by the floodplain water balance, drainage of shallow acid groundwater, and tidal floodgate operation. Floodgates store acid waters for more than six months. Acid discharges ranged from short pulses during light rains to ~950 t of sulfuric acid in a major flood that acidified the reach for over seven weeks. Extensive iron flocs accompanied acidification and coated the benthos. The chemistry of the reach reflected mixing of acid groundwater with upland waters and showed pH-dependent enhancement or depletion of species relative to chloride. Concentrations of monomeric aluminium were over 300 times larger than local (ANZECC) guidelines and 90 km of the river were acidified after floods. The estimated rate of sulfuric acid production from the floodplain is ~300 kg ha-1 year-1 and discharge may occur for over 1000 years. Management options are considered; however, the long-term consequences of acidification of tidal reaches are unknown.
This ecological study of the Myall Lakes, a lagoon system on the New South Wales central coast, presents the physical setting and characteristics of the Lakes' catchments and relates these characteristics to the hydrochemical features of surface and subsurface waters. In turn these hydrochemical features have been related to the aquatic communities.It is suggested that the predominance of forest vegetation and stable soils in the Lakes' catchment has assisted in retaining these lakes in a generally undisturbed state.Fluctuations of salinity, turbidity and ionic concentrations in the lower part of the system are controlled by natural inputs of rainfall, run-off and tidal flushings. However, Boolambayte Lake and particularly Myall Lake, the upper part of the system, appear to be isolated from these influences. The aquatic communities reflect these hydrochemical differences.The lack of flushing of waters in this upper part of the system, in Dirty Creek and to a lesser extent in the Myall River immediately upstream of the Broadwater, makes these areas particularly susceptible to pollution and eutrophication associated with increased development.
The previously developed model of water absorption by a swelling seed has been applied to imbibition and germination of wheat seed with the limiting supply condition of purely water vapour transport both with and without the presence of a porous medium. Experimental imbibition and germination data show that with vapour transport, the rate of imbibition and germination of wheat decreases with increasing distance from the supply source and that competition for water vapour occurs between seed. This competition effect was verified by values of the flow pathway shape factor for vapour transport to seed, measured in a three-dimensional electrical analogue. After accounting for heat production and losses with vapour absorption and using appropriate values of the flow pathway shape factors, the equilibrium seed absorption isotherms were used to derive surface condensation boundary conditions for several imbibition situations. These calculations suggest that in the absence of porous media a significant temperature rise of the seed retards the rate of imbibition. By comparison, with a close-packed porous medium around the seed, the large thermal conductivity of the medium should maintain nearly isothermal conditions. Using a finite difference approximation, the swelling seed model and condensation boundary conditions are analysed to give predicted imbibition data which can be compared with experimental data. These results show good agreement between predicted and experimental imbibition in the absence of a porous medium. For seed embedded in a porous medium, the predicted imbibition rate significantly exceeds the experimental rate, but no account could be taken for restriction of seed swelling by the porous medium. The results are discussed in terms of their relevance to the sowing of seed in 'dry' seed bed conditions.
Recent analyses of water absorption by seeds have used a non-swelling model with constant diffusivity and constant surface concentration boundary condition. A physically realistic modification of such analyses is developed, where the spherical seed has the properties of normal swelling, moisture content dependent diffusively, and a moisture characteristic which is described by the double layer theory relevant to colloids under mechanical restraint. Analysis of this model by a finite difference approximation produces a relationship between linearized moisture content and dimensionless time which is appropriate to all spherical swelling materials. A good match was obtained between this relationship and experimental absorption data for wheat seed. The relationship given graphically in dimensionless form is applicable to any swelling system, e.g. soil aggregates, which satisfy normal swelling and constrained double layer boundary conditions. The analysis gave values for the diffusivity of the seed similar to, but larger than, those calculated from non-swelling models. These are much smaller than most values of diffusivity of soils in the available water range. The magnitude of the maximum rate at which a seed can absorb water relative to that which the soil can supply, predicts that for seeds embedded in most soils, the constant surface concentration boundary condition used by most authors is inappropriate. In terms of the swelling behaviour of most soils, the swelling model, unlike the non-swelling model, predicts that imbibing seed embedded in soil will be subject to a mechanical constraint.
Sorted step patterned ground at Fowlers Gap Field Station occurs within a variety of different Landsystem Units. Areas of sorted step patterned ground from Nuntherungie and Gap Hills Landsystems were selected and the soil properties compared. Soils from areas of sorted step patterned ground are composed of bare saline soils which surround the less saline vegetated soils. Despite occurring within different Landsystems, the suite of soil chemical properties (EC, soluble cations, and pH) between the bare and vegetated area within the patterned ground were statistically the same in most cases. Differences in the suite of soil salts probably arise from variations in gilgai microtopography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.