The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the ''efficiency, or ''automaticity'' of postural control''. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control.
In a recent study, De Haart et al. (Arch Phys Med Rehabil 85:886-895, 2004) investigated the recovery of balance in stroke patients using traditional analyses of center-of-pressure (COP) trajectories to assess the effects of health status, rehabilitation, and task conditions like standing with eyes open or closed and standing while performing a cognitive dual task. To unravel the underlying control processes, we reanalyzed these data in terms of stochastic dynamics using more advanced analyses. Dimensionality, local stability, regularity, and scaling behavior of COP trajectories were determined and compared with shuffled and phase-randomized surrogate data. The presence of long-range correlations discarded the possibility that the COP trajectories were purely random. Compared to the healthy controls, the COP trajectories of the stroke patients were characterized by increased dimensionality and instability, but greater regularity in the frontal plane. These findings were taken to imply that the stroke patients actively (i.e., cognitively) coped with the stroke-induced impairment of posture, as reflected in the increased regularity and decreased local stability, by recruiting additional control processes (i.e., more degrees of freedom) and/or by tightening the present control structure while releasing non-essential degrees of freedom from postural control. In the course of rehabilitation, dimensionality stayed fairly constant, whereas local stability increased and regularity decreased. The progressively less regular COP trajectories were interpreted to indicate a reduction of cognitive involvement in postural control as recovery from stroke progressed. Consistent with this interpretation, the dual task condition resulted in less regular COP trajectories of greater dimensionality, reflecting a task-related decrease of active, cognitive contributions to postural control. In comparison with conventional posturography, our results show a clear surplus value of dynamical measures in studying postural control.
The results suggest that acoustically paced treadmill walking provides an effective means for immediately modifying stride frequency and improving gait coordination in people after stroke and, therefore, may be usefully applied in physical therapist practice. Future research directions for developing guidelines for using acoustically paced treadmill walking in physical therapist practice are discussed.
Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.