Genomic imprinting refers to silencing of one parental allele in the zygotes of gametes depending upon the parent of origin. Loss of imprinting (LOI) is the gain of function from the silent allele that can have a maximum effect of doubling the gene dosage. LOI may play a significant role in the etiology of intrauterine growth restriction (IUGR). Using placental tissue from ten normal and seven IUGR pregnancies, we conducted a systematic survey of the expression of a panel of 74 "putatively" imprinted genes using quantitative RT-PCR. We found that 52/74 (~70%) of the genes were expressed in human placentas. Nine of the 52 (17%) expressed genes were significantly differentially expressed between normal and IUGR placentas; five were upregulated (PHLDA2, ILK2, NNAT, CCDC86, PEG10) and four downregulated (PLAGL1, DHCR24, ZNF331, CDKAL1). We also assessed LOI profile of 14 imprinted genes in 14 normal and 24 IUGR placentas using a functional and sensitive assay developed in our laboratory. Little LOI was observed in any placentas for five of the genes (PEG10, PHLDA2, MEG3, EPS15, CD44). With the 149 heterozygosities examined, 40 (26.8%) exhibited LOI >3%. Some genes exhibited frequent LOI in placentas regardless of the disease status (IGF2, TP73, MEST, SLC22A18, PEG3), while others exhibited LOI only in IUGR placentas (PLAGL1, DLK1, H19, SNRPN). Importantly, there was no correlation between gene expression and LOI profile. Our study suggests that genomic imprinting may play a role in IUGR pathogenesis, but mechanisms other than LOI may contribute to dysregulation of imprinted genes. IntroductionGenomic imprinting refers to silencing of one parental allele in the zygotes of gametes depending upon the parent of origin; this silencing occurs via epigenetic processes such as DNA methylation and/or histone modification. 1 It has been hypothesized in the "parental conflict" theory that paternally expressed genes favors the utilization of maternal resources for the benefit of the offspring while the maternally expressed genes act to preserve such resources. Thus, imprinted genes that are paternally expressed (maternally imprinted) are predicted to promote growth of the offspring, either in utero or in perinatal period, whilst maternally expressed (paternally imprinted) genes would act as growth suppressors to assure appropriate allocation of limited maternal resources to each conceptus. 2 Consequently, imprinted genes play critical roles in regulation of growth and development; disruption of this critical process, such as loss of imprinting (LOI), has been associated with a wide range of human diseases including birth defects neurodevelopmental disorders and cancer. [3][4][5][6][7] Compared to other mammalian genomes such as that of the mouse, the human genome is imprinted to a much lesser degree, possibly due to a lack of competition for maternal resources because human pregnancies are typically singletons. 8 The estimated number of imprinted genes is ~100-200 (<1% of the genome). This limited number of imprinted genes affo...
Weekly courses of antenatal corticosteroids did not reduce composite neonatal morbidity compared with a single course of treatment. Weekly courses of antenatal corticosteroids should not be routinely prescribed for women at risk of preterm delivery.
Emerging evidence indicates that maternal medical risk during pregnancy, such as gestational diabetes mellitus (GDM), preeclampsia, and obesity, predisposes the offspring to suboptimal development. However, the underlying biological/epigenetic mechanism in utero is still unknown. The current pilot study (N ¼ 50) compared the levels of global methylation in the placenta and umbilical cord blood among women with and without each risk condition (GDM, preeclampsia, and obesity) and explored whether the levels of global methylation were associated with fetal/infant growth. Results show that global methylation levels in the placenta were lower in patients with gestational diabetes (P ¼ .003) and preeclampsia (P ¼ .05) but higher with obesity (P ¼ .01). Suggestive negative associations were found between global methylation level in the placenta and infant body length and head circumference. While preliminary, it is possible that the placenta tissue, but not umbilical cord blood, may be epigenetically programmed by maternal GDM, preeclampsia, and obesity to carry out its own specific functions that influence fetal growth.
Background Infants born preterm compared with infants born at term are at an increased risk of dying and of serious morbidities in early life, and those who survive have higher rates of neurological impairments. It remains unclear whether exposure to repeat courses of prenatal corticosteroids can reduce these risks. This individual participant data (IPD) meta-analysis (MA) assessed whether repeat prenatal corticosteroid treatment given to women at ongoing risk of preterm birth in order to benefit their infants is modified by participant or treatment factors. Methods and findings Trials were eligible for inclusion if they randomised women considered at risk of preterm birth who had already received an initial, single course of prenatal corticosteroid seven or more days previously and in which corticosteroids were compared with either placebo or no placebo. The primary outcomes for the infants were serious outcome, use of respiratory support, and birth weight z-scores; for the children, they were death or any neurosensory disability; and for the women, maternal sepsis. Studies were identified using the Cochrane Pregnancy and Childbirth search strategy. Date of last search was 20 January 2015. IPD were sought from investigators with eligible trials. Risk of bias was assessed using criteria from the Cochrane Collaboration. IPD were analysed using a one-stage approach. Eleven trials, conducted between 2002 and 2010, were identified as eligible, with five trials being from the United States, two from Canada, and one each from Australia and New Zealand, Finland, India, and the United Kingdom. All 11 trials were included, with 4,857 women and 5,915 infants contributing data. The mean gestational age at trial entry for the trials was between 27.4 weeks and 30.2 weeks. There was no significant difference in the proportion of infants with a serious outcome (relative risk [RR] 0.92, 95% confidence interval [CI] 0.82 to 1.04, 5,893 infants, 11 trials, p = 0.33 for heterogeneity). There was a reduction in the use of respiratory support in infants exposed to repeat prenatal corticosteroids compared with infants not exposed (RR 0.91, 95% CI 0.85 to 0.97, 5,791 infants, 10 trials, p = 0.64 for heterogeneity). The number needed to treat (NNT) to benefit was 21 (95% CI 14 to 41) women/fetus to prevent one infant from needing respiratory support. Birth weight z-scores were lower in the repeat corticosteroid group (mean difference −0.12, 95%CI −0.18 to −0.06, 5,902 infants, 11 trials, p = 0.80 for heterogeneity). No statistically significant differences were seen for any of the primary outcomes for the child (death or any neurosensory disability) or for the woman (maternal sepsis). The treatment effect varied little by reason the woman was considered to be at risk of preterm birth, the number of fetuses in utero, the gestational age when first trial treatment course was given, or the time prio...
Loss of imprinting (LOI)is the gain of expression from the silent allele of an imprinted gene normally expressed from only one parental copy. LOI has been associated with neurodevelopmental disorders and reproductive abnormalities. The mechanisms of imprinting are varied, with DNA methylation representing only one. We have developed a functional transcriptional assay for LOI that is not limited to a single mechanism of imprinting. The method employs allele-specific PCR analysis of RT-PCR products containing common readout polymorphisms. With this method, we are able to measure LOI at the sensitivity of 1%. The method has been applied to measurement of LOI in human placentas. We found that RNA was stable in placentas stored for more than one hour at 4°C following delivery. We analyzed a test panel of 26 genes known to be imprinted in the human genome. We found that 18 genes were expressed in placenta. Fourteen of the 18 expressed genes contained common readout polymorphisms in the transcripts with a minor allele frequency >20%. We found that 5 of the 14 genes were not imprinted in placenta. Using the remaining nine genes, we examined 93 heterozygosities in 27 samples. The range of LOI was 0%-96%. Among the 93 heterozygosities, we found 23 examples (25%) had LOI >3% and eight examples (9%) had LOI 1-3%. Our results indicate that LOI is common in human placentas. Because LOI in placenta is common, it may be an important new biomarker for influences on prenatal epigenetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.