Current sources of stem cells include embryonic stem cells (ESCs) and adult stem cells (ASCs). However, concerns exist with either source: ESCs, with their significant ethical considerations, tumorigenicity, and paucity of cell lines; and ASCs, which are possibly more limited in potential. Thus, the search continues for an ethically conducive, easily accessible, and high-yielding source of stem cells. We have isolated a population of multipotent cells from the human term placenta, a temporary organ with fetal contributions that is discarded postpartum. These placenta-derived multipotent cells (PDMCs) exhibit many markers common to mesenchymal stem cells-including CD105/endoglin/SH-2, SH-3, and SH-4-and they lack hematopoietic-, endothelial-, and trophoblastic-specific cell markers. In addition, PDMCs exhibit ESC surface markers of SSEA-4, TRA-1-61, and TRA-1-80. Adipogenic, osteogenic, and neurogenic differentiation were achieved after culturing under the appropriate conditions. PDMCs could provide an ethically uncontroversial and easily accessible source of multipotent cells for future experimental and clinical applications. Stem Cells 2005;23:3-9
Several types of nonhematopoietic stem cells, including bone marrow mesenchymal stem cells (BMMSCs) and embryonic stem cells, have been shown to have immunosuppressive properties. We show that human placenta-derived multipotent cells (PDMCs), which are isolated from a source without ethical concern and harbor multilineage differentiation potential, have strong immunosuppressive properties. PDMCs suppress both mitogen-induced and allogeneic lymphocyte proliferation in both CD4 and CD8 populations. The immunosuppression seen with PDMCs was significantly stronger than that with BMMSCs. Both PDMCs and BMMSCs express indoleamine 2,3-dioxygenase, but only PDMCs are positive for intracellular human leukocyte antigen-G (HLA). Mechanistically, suppression of lymphocyte reactivity by PDMCs is not due to cell death but to decreased cell proliferation and increased numbers of regulatory T cells. Addition of neutralizing antibodies to interleukin-10 and transforming growth factor (TGF)- partially restored lymphocyte proliferation. Unlike BMMSCs, PDMCs treated with interferon-␥ for 3 days only very minimally upregulated HLA-DR. On the contrary, PD-L1, a cell surface marker that plays an inhibitory role in T-cell activation, was upregulated and TGF- expression was seen. The immunosuppressive properties of PDMCs, along with their multilineage differentiation potential, ease of accessibility, and abundant cell numbers, may render these cells as good potential sources for future therapeutic applications. STEM
Reports of the bone-protective effects of resveratrol, a naturally occurring phytoestrogen and agonist for the longevity gene SIRT1, have highlighted this compound as a candidate for therapy of osteoporosis. Moreover, SIRT1 antagonism enhances adipogenesis. There has been speculation that resveratrol can promote osteogenesis through SIRT1, but the mechanism remains unclear. In this study we investigated the molecular mechanism of how resveratrol can modulate the lineage commitment of human mesenchymal stem cells to osteogenesis other than adipogenesis. We found that resveratrol promoted spontaneous osteogenesis but prevented adipogenesis in human embryonic stem cell-derived mesenchymal progenitors. Resveratrol upregulated the expression of osteo-lineage genes RUNX2 and osteocalcin while suppressing adipo-lineage genes PPARg2 and LEPTIN in adipogenic medium. Furthermore, we found that the osteogenic effect of resveratrol was mediated mainly through SIRT1/FOXO3A with a smaller contribution from the estrogenic pathway. Resveratrol activated SIRT1 activity and enhanced FOXO3A protein expression, a known target of SIRT1, in an independent manner. As a result, resveratrol increased the amount of the SIRT1-FOXO3A complex and enhanced FOXO3A-dependent transcriptional activity. Ectopic overexpression or silencing of SIRT1/FOXO3A expression regulated RUNX2 promoter activity, suggesting an important role for SIRT1-FOXO3A complex in regulating resveratrol-induced RUNX2 gene transcription. Further mutational RUNX2 promoter analysis and chromatin immunoprecipitation assay revealed that resveratrol-induced SIRT1-FOXO3A complex bound to a distal FOXO response element (À1269/À1263), an action that transactivated RUNX2 promoter activity in vivo. Taken together, our results describe a novel mechanism of resveratrol in promoting osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. ß
Human mesenchymal stem cells (MSCs) are multilineage somatic progenitor/stem cells that have been shown to possess immunomodulatory properties in recent years. Initially met with much skepticism, MSC immunomodulation has now been well reproduced across tissue sources and species to be clinically relevant. This has opened up the use of these versatile cells for application as 3rd party/allogeneic use in cell replacement/tissue regeneration, as well as for immune- and inflammation-mediated disease entities. Most surprisingly, use of MSCs for in immune-/inflammation-mediated diseases appears to yield more efficacy than for regenerative medicine, since engraftment of the exogenous cell does not appear necessary. In this review, we focus on this non-traditional clinical use of a tissue-specific stem cell, and highlight important findings and trends in this exciting area of stem cell therapy.
Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin H synthase, has been implicated in the progression of human lung adenocarcinoma. However, the mechanism underlying COX-2's effect on tumor progression remains largely unknown. Lymphangiogenesis, the formation of new lymphatic vessels, has recently received considerable attention and become a new frontier of tumor metastasis research. Here, we study the interaction between COX-2 and the lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C, in human lung cancer cells and their implication in patient outcomes. We developed an isopropyl--D-thiogalactopyranoside-inducible COX-2 gene expression system in human lung adenocarcinoma CL1.0 cells. We found that VEGF-C gene expression but not VEGF-D was significantly elevated in cells overexpressing COX-2. COX-2-mediated VEGF-C up-regulation was commonly observed in a broad array of non-small cell lung cancer cell lines. The use of pharmacological inhibitors or activators and genetic inhibition by EP receptorantisense oligonucleotides revealed that prostaglandin EP 1 receptor but not other prostaglandin receptors is involved in COX-2-mediated VEGF-C up-regulation. At the mechanistic level, we found that COX-2 expression or prostaglandin E 2 (PGE 2 ) treatment could activate the HER-2/Neu tyrosine kinase receptor through the EP 1 receptor-dependent pathway and that this activation was essential for VEGF-C induction. The transactivation of HER-2/Neu by PGE 2 was inhibited by way of blocking the Src kinase signaling using the specific Src family inhibitor, PP1, or transfection with the mutant dominant negative src plasmid. Src kinase was involved in not only the HER-2/Neu transactivation but also the following VEGF-C up-regulation by PGE 2 treatment. In addition, immunohistochemical staining of 59 lung adenocarcinoma specimens showed that COX-2 level was highly correlated with VEGF-C, lymphatic vessels density, and other clinicopathological parameters. Taken together, our results provided evidence that COX-2 up-regulated VEGF-C and promotes lymphangiogenesis in human lung adenocarcinoma via the EP 1 /Src/ HER-2/Neu signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.