CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15–30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.
The individual and joint effects of covering the soil with polyethylene mulch before planting and fungicides commonly used by organic growers on tomato late blight (caused by Phytophthora infestans) were studied in three experiments conducted from 2002 to 2005. Application of fungicides resulted in inconsistent and insufficient late blight suppression (control efficacy +/- standard error of 34.5 +/- 14.3%) but the polyethylene mulch resulted in consistent, effective, and highly significant suppression (control efficacy of 83.6 +/- 5.5%) of the disease. The combined effect of the two measures was additive. In a second set of three experiments carried out between 2004 and 2006, it was found that the type of polyethylene mulch used (bicolor aluminized, clear, or black) did not affect the efficacy of late blight suppression (control efficacy of 60.1 to 95.8%) and the differences in the effects among the different polyethylene mulches used were insignificant. Next, the ability of the mulch to suppress cucumber downy mildew (caused by Pseudoperonospora cubensis) was studied in four experiments carried out between 2006 and 2008. The mulch effectively suppressed cucumber downy mildew but the effect was less substantial (control efficacy of 34.9 +/- 4.8%) than that achieved for tomato late blight. The disease-suppressing effect of mulch appeared to come from a reduction in leaf wetness duration, because mulching led to reductions in both the frequency of nights when dew formed and the number of dew hours per night when it formed. Mulching also reduced relative humidity in the canopy, which may have reduced sporulation.
CRISPR/Cas12-based detection is a novel approach for efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the Tomato brown rugose fruit virus (ToBRFV), a new and emerging Tobamovirus causing substantial damage to the global tomato industry. Specific guide RNAs (gRNAs) were designed to detect either ToBRFV or the closely related Tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15-30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method enabled the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of plant viruses. This could provide a platform for the development of efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.