The present paper deals with breast tumors classification from ultrasound images. The proposed procedure consists of four steps, namely preprocessing, segmentation, feature extraction and classification. To improve the quality of ultrasound images, the preprocessing step consists of anisotropic filtering and histogram equalization that are performed on the original images. The segmentation is performed on the preprocessed images using the Level Set method that allows to extract the region of interest (ROI) and to reduce its size at the same time. Two feature extraction methods are used in this work namely, the local binary pattern (LBP) method and the histogram of oriented gradients (HOG) method. The two methods (LBP and HOG) are techniques of textures analysis and allow to characterize the ROI. The extracted feature sets constitute the inputs for three classifiers namely, support vector machines (SVM), k-nearest neighbors (KNN) and decision trees (DT). In this work, the best results are obtained by the concatenation of the two feature vectors namely LBP and HOG associated to the SVM classifier. This allows to achieve an accuracy of 96%, a sensitivity of 97% and a specificity of 94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.