S-wave amplitude variation with offset (AVO) analysis is sensitive to the presence of fractures and can provide a high-resolution seismic-based fracture characterization as compared with traditionally used traveltime-based methods. To determine viable attributes for estimation of properties such as spatial density and fluid fill of fractures, S-wave AVO modeling and analysis is carried out in the Wellington Field, Kansas, where 9C-2D seismic data have been acquired. Analysis is performed on the Ordovician fractured-carbonate interval called the Arbuckle Group, which is being considered for [Formula: see text] sequestration. AVO modeling of the Arbuckle interval indicates that differences in AVO intercepts of different S-wave polarizations can estimate S-wave anisotropy parameter [Formula: see text], which gives an estimate of fracture density. In addition, modeling suggests that AVO gradients of [Formula: see text] and [Formula: see text] waves can be used to derive a seismic attribute to discriminate fluid fill in fractures, provided good-quality S-wave gathers are available. The intercept anisotropy (IA) attribute obtained from AVO intercepts of S-waves provides fracture density estimates within the Arbuckle Group. These estimates are consistent with the field-wide, low-frequency observations from seismic velocities and spatially limited, high-frequency estimates obtained from drill cores and sonic and borehole-image logs. The IA attribute highlights possible high-permeability zones in the Upper and Lower Arbuckle suitable for [Formula: see text] injection. The Middle Arbuckle indicates low fracture density, potentially acting as a baffle to vertical flow and providing a seal for the Lower Arbuckle. The gradient anisotropy attribute obtained from the AVO gradient of S-waves suggests that most fractures in the Arbuckle are brine saturated. This attribute has a potential application in monitoring the movement of a [Formula: see text] plume in the Arbuckle Group when time-lapse data become available. These results demonstrate that S-wave AVO attributes can supplement the P-wave derived subsurface properties and significantly reduce uncertainties in subsurface fracture characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.