Six ruminally and duodenally cannulated sheep were used in a partially replicated 4 x 4 Latin square to evaluate the effects of 4 diets on microbial synthesis, microbial populations, and ruminal digestion. The experimental diets had forage to concentrate ratios (F:C; DM basis) of 70:30 (HF) or 30:70 (HC) with alfalfa hay (A) or grass hay (G) as forage and were designated as HFA, HCA, HFG, and HCG. The concentrate was based on barley, gluten feed, wheat middlings, soybean meal, palmkern meal, wheat, corn, and mineral-vitamin premix in the proportions of 22, 20, 20, 13, 12, 5, 5, and 3%, respectively (as-is basis). Sheep were fed the diets at a daily rate of 56 g/kg of BW(0.75) to minimize feed selection. High-concentrate diets resulted in greater (P < 0.001) total tract apparent OM digestibility compared with HF diets, but no differences were detected in NDF digestibility. Ruminal digestibility of OM, NDF, and ADF was decreased by increasing the proportion of concentrate, but no differences between forages were detected. Compared with sheep fed HF diets, sheep receiving HC diets had less ruminal pH values and acetate proportions, but greater butyrate proportions. No differences among diets were detected in numbers of cellulolytic bacteria, but protozoa numbers were less (P = 0.004) and total bacteria numbers tended (P = 0.08) to be less for HC diets. Carboxymethylcellulase, xylanase, and amylase activities were greater for HC compared with HF diets, with A diets showing greater (P = 0.008) carboxymethylcellulase activities than G diets. Retained N ranged from 28.7 to 37.9% of N intake and was not affected by F:C (P = 0.62) or the type of forage (P = 0.31). Microbial N synthesis and its efficiency was greater (P < 0.001) for HC diets compared with HF diets. The results indicate that concentrates with low cereal content can be included in the diet of sheep up to 70% of the diet without detrimental effects on ruminal activity, microbial synthesis efficiency, and N losses.
Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate, butyrate, isovalerate, valerate, and caproate. Values of efficiency of microbial growth were greater in fermenters compared with sheep for 70:30 diets, but they were lower for 30:70 diets. Differences between fermentation in sheep and fermenters can be mainly attributed to the lack of absorption in fermenters, differences in solid retention time, and compartmentalization in the Rusitec system. In general, the Rusitec system simulated more closely the in vivo fermentation of high-forage diets compared with high-concentrate diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.