Background-Patients with left ventricular dysfunction have an elevated risk of sudden cardiac death. However, the substrate for ventricular arrhythmia in patients with nonischemic cardiomyopathy remains poorly understood. We hypothesized that the distribution of scar identified by MRI is predictive of inducible ventricular tachycardia. Methods and Results-Short-axis cine steady-state free-precession and postcontrast inversion-recovery gradient-echo MRI sequences were obtained before electrophysiological study in 26 patients with nonischemic cardiomyopathy. Left ventricular ejection fraction was measured from end-diastolic and end-systolic cine images. The transmural extent of scar as a percentage of wall thickness (percent scar transmurality) in each of 12 radial sectors per slice was calculated in all myocardial slices. The percentages of sectors with 1% to 25%, 26% to 50%, 51% to 75%, and 76% to 100% scar transmurality were determined for each patient. Predominance of scar distribution involving 26% to 75% of wall thickness was significantly predictive of inducible ventricular tachycardia and remained independently predictive in the multivariable model after adjustment for left ventricular ejection fraction (odds ratio, 9.125; Pϭ0.020). Conclusions-MR
Background-MRI has unparalleled soft-tissue imaging capabilities. The presence of devices such as pacemakers and implantable cardioverter/defibrillators (ICDs), however, is historically considered a contraindication to MRI. These devices are now smaller, with less magnetic material and improved electromagnetic interference protection. Our aim was to determine whether these modern systems can be used in an MR environment. Methods and Results-We tested in vitro and in vivo lead heating, device function, force acting on the device, and image distortion at 1.5 T. Clinical MR protocols and in vivo measurements yielded temperature changes Ͻ0.5°C. Older (manufactured before 2000) ICDs were damaged by the MR scans. Newer ICD systems and most pacemakers, however, were not. The maximal force acting on newer devices was Ͻ100 g. Modern (manufactured after 2000) ICD systems were implanted in dogs (nϭ18), and after 4 weeks, 3-to 4-hour MR scans were performed (nϭ15). No device dysfunction occurred. The images were of high quality with distortion dependent on the scan sequence and plane. Pacing threshold and intracardiac electrogram amplitude were unchanged over the 8 weeks, except in 1 animal that, after MRI, had a transient (Ͻ12 hours) capture failure. Pathological data of the scanned animals revealed very limited necrosis or fibrosis at the tip of the lead area, which was not different from controls (nϭ3) not subjected to MRI. Conclusions-These
Background-Magnetic resonance imaging (MRI) is an important diagnostic modality currently unavailable for millions of patients because of the presence of implantable cardiac devices. We sought to evaluate the diagnostic utility and safety of noncardiac and cardiac MRI at 1.5T using a protocol that incorporates device selection and programming and limits the estimated specific absorption rate of MRI sequences. Methods and Results-Patients with no imaging alternative and with devices shown to be MRI safe by in vitro phantom and in vivo animal testing were enrolled. Of 55 patients who underwent 68 MRI studies, 31 had a pacemaker, and 24 had an implantable defibrillator. Pacing mode was changed to "asynchronous" for pacemaker-dependent patients and to "demand" for others. Magnet response and tachyarrhythmia functions were disabled. Blood pressure, ECG, oximetry, and symptoms were monitored. Efforts were made to limit the system-estimated whole-body average specific absorption rate to 2.0 W/kg (successful in Ͼ99% of sequences) while maintaining the diagnostic capability of MRI. No episodes of inappropriate inhibition or activation of pacing were observed. There were no significant differences between baseline and immediate or long-term (median 99 days after MRI) sensing amplitudes, lead impedances, or pacing thresholds. Diagnostic questions were answered in 100% of nonthoracic and 93% of thoracic studies. Clinical findings included diagnosis of vascular abnormalities (9 patients), diagnosis or staging of malignancy (9 patients), and assessment of cardiac viability (13 patients). Conclusions-Given appropriate precautions, noncardiac and cardiac MRI can potentially be safely performed in patients with selected implantable pacemaker and defibrillator systems.
Background Magnetic resonance imaging (MRI) is avoided in most patients with implanted cardiac devices because of safety concerns. Objective To define the safety of a protocol for MRI at the commonly used magnetic strength of 1.5 T in patients with implanted cardiac devices. Design Prospective nonrandomized trial. (ClinicalTrials.gov registration number: NCT01130896) Setting One center in the United States (94% of examinations) and one in Israel. Patients 438 patients with devices (54% with pacemakers and 46% with defibrillators) who underwent 555 MRI studies. Intervention Pacing mode was changed to asynchronous for pacemaker-dependent patients and to demand for others. Tachy-arrhythmia functions were disabled. Blood pressure, electrocardiography, oximetry, and symptoms were monitored by a nurse with experience in cardiac life support and device programming who had immediate backup from an electrophysiologist. Measurements Activation or inhibition of pacing, symptoms, and device variables. Results In 3 patients (0.7% [95% CI, 0% to 1.5%]), the device reverted to a transient back-up programming mode without long-term effects. Right ventricular (RV) sensing (median change, 0 mV [interquartile range {IQR}, −0.7 to 0 V]) and atrial and right and left ventricular lead impedances (median change, −2 Ω[IQR, −13 to 0 Ω], −4 Ω [IQR, −16 to 0 Ω], and −11 Ω [IQR, −40 to 0 Ω], respectively) were reduced immediately after MRI. At long-term follow-up (61% of patients), decreased RV sensing (median, 0 mV, [IQR, −1.1 to 0.3 mV]), decreased RV lead impedance (median, −3 Ω, [IQR, −29 to 15 Ω]), increased RV capture threshold (median, 0 V, IQR, [0 to 0.2 Ω]), and decreased battery voltage (median, −0.01 V, IQR, −0.04 to 0 V) were noted. The observed changes did not require device revision or reprogramming. Limitations Not all available cardiac devices have been tested. Long-term in-person or telephone follow-up was unavailable in 43 patients (10%), and some data were missing. Those with missing long-term capture threshold data had higher baseline right atrial and right ventricular capture thresholds and were more likely to have undergone thoracic imaging. Defibrillation threshold testing and random assignment to a control group were not performed. Conclusion With appropriate precautions, MRI can be done safely in patients with selected cardiac devices. Because changes in device variables and programming may occur, electrophysiologic monitoring during MRI is essential. Primary Funding Source National Institutes of Health.
Together these data demonstrate that autologous MSCs can be safely delivered in an adult heart failure model, producing substantial structural and functional reverse remodelling. These findings demonstrate the safety and efficacy of autologous MSC therapy and support clinical trials of MSC therapy in patients with chronic ischaemic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.