Using dynamical computer simulation, we investigate vortex matter in glass states. A genuine continuous depinning transition is observed at zero temperature, which also governs the low-temperature creep motion. With the notion of scaling, we evaluate in high accuracy critical exponents and scaling functions; we observe a non-Arrhenius creep motion for weak collective pinning where the Bragg glass is stabilized at equilibrium, while for strong pinning, the well-known Arrhenius law is recovered. In both cases, a sharp crossover takes place between depinning and creep at low temperatures.
The critical adsorption of self-avoiding polymer chain in a simple cubic lattice onto a flat surface is studied with Monte Carlo simulations. The dependence of number of surface contacts M on chain length N and polymer-surface interaction epsilon is investigated by a finite-size scaling approach. We estimate the critical adsorption point epsilon(c)=0.291+/-0.002 and the exponent phi=0.54+/-0.01. The asymptotic behaviors M proportional variant N for epsilon>>epsilon(c) and M proportional variant N(0) for epsilon<
Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4 nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.