Soil salinity is a common abiotic stress affecting crop productivity. To identify favorable alleles from wild rice (Oryza rufipogon Griff.) that enhance salinity tolerance of rice (O. sativa L.), a set of introgression lines (ILs) were developed. The ILs were derived from an O. rufipogon accession collected from Chaling (Hunan Province, China) as the donor, and a widely grown O. sativa indica cultivar 93-11 as the recipient. Through evaluating the salt tolerance of 285 ILs at the seedling stage, a total of 10 quantitative trait loci (QTLs) related to salt tolerance were identified on chromosomes 1, 5, 7 and 9–12, with individual QTLs explaining 2–8% of phenotypic variance. The O. rufipogon-derived alleles at four QTLs improved salt tolerance in the 93-11 background. At the same time, a salt-tolerant IL, 9L136, was identified and characterized. Compared with the recipient parent 93-11, a total of 1,391 differentially expressed genes (DEGs) were detected specifically in 9L136 between salt stress and normal condition through genome-wide expression analysis. Of these, four DEGs located in the QTL regions carried by 9L136, suggesting that the four genes might be candidates associated with salt tolerance. Both the highly salt-tolerant ILs and the favorable O. rufipogon-derived QTLs identified in the present study will provide new genetic resources for improving the resistance of cultivated rice against salinity stress using molecular breeding strategies in the future.
Herein, N-doped carbon dots with excellent fluorescence characteristics were prepared by a solvent-free, microwave-assisted method and employed for the fluorometric detection of Cr(vi) and bioimaging.
Marine biofouling is one of the most significant challenges hindering practical uranium extraction from seawater. Single atoms have been widely used in catalytic applications because of their remarkable redox property, implying that the single atom is highly capable of catalyzing the generation of reactive oxygen species (ROS) and acts as an anti-biofouling substance for controlling biofouling. In this study, the Co single atom loaded polyacrylamidoxime (PAO) material, PAO-Co, is fabricated based on the binding ability of the amidoxime group to uranyl and cobalt ions. Nitrogen and oxygen atoms from the amidoxime group stabilize the Co single atom. The fabricated PAO-Co exhibits a broad range of antimicrobial activity against diverse marine microorganisms by producing ROS, with an inhibition rate up to 93.4%. The present study is the first to apply the single atom for controlling biofouling. The adsorbent achieves an ultrahigh uranium adsorption capacity of 9.7 mg g −1 in biofouling-containing natural seawater, which decreased only by 11% compared with that in biofouling-removed natural seawater. These findings indicate that applying single atoms would be a promising strategy for designing biofouling-resistant adsorbents for uranium extraction from seawater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.