We report on the first experimental demonstration of low-light-level cross-phase modulation (XPM) with double slow light pulses based on the double electromagnetically induced transparency (EIT) in cold cesium atoms. The double EIT is implemented with two control fields and two weak fields that drive populations prepared in the two doubly spin-polarized states. Group velocity matching can be obtained by tuning the intensity of either of the control fields. The XPM is based on the asymmetric M-type five-level system formed by the two sets of EIT. Enhancement in the XPM by group velocity matching is observed. Our work advances studies of low-light-level nonlinear optics based on double slow light pulses.
We report the generation of strong, bright-beam intensity-difference squeezing down to measurement frequencies below 10 Hz. We generate two-mode squeezing in a four-wave mixing (4WM) process in Rb vapor, where the single-pass-gain nonlinear process does not require cavity locking and only relies on passive stability. We use diode laser technology and several techniques, including dual seeding, to remove the noise introduced by seeding the 4WM process as well as the background noise. Twin-beam intensity-difference squeezing down to frequencies limited only by the mechanical and atmospheric stability of the lab is achieved. These results should enable important low-frequency applications such as direct intensity-difference imaging with bright beams on integrating detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.