The morphology evolution from monoclinic molybdenum trioxide (β-MoO3) to orthorhombic molybdenum trioxide (α-MoO3) and quantitative analyses of their mixtures were examined. It was found that the morphology (from spherical to elliptical shape) and color (from green to white) displayed obvious changes when β-MoO3 converted to α-MoO3 in ambient air at 773 K. The transformation from β-MoO3 to α-MoO3 resulted from a change of the internal crystalline structure. The mass percent of β-MoO3 in MoO3 mixtures showed an excellent linear relationship with the relative intensity ratio of the strongest peaks in X-ray diffraction patterns. This approach provides a simple and time-saving method to evaluate the amount of β-MoO3, which is a promising material in catalyst and electrochemical applications, in such mixtures. This finding may provide guidance for the analysis of catalytic performance of MoO3 mixtures. In addition, it was found that β-MoO3 can be easily decomposed into suboxides such as MoO2 and Mo4O11 in pure argon gas atmosphere. The possible decomposition mechanism of β-MoO3 is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.