Chronic liver injury (CLI) is a complex pathological process typically characterized by progressive destruction and regeneration of liver parenchymal cells due to diverse risk factors such as alcohol abuse, drug toxicity, viral infection, and genetic metabolic disorders. When the damage to hepatocytes is mild, the liver can regenerate itself and restore to the normal state; when the damage is irreparable, hepatocytes would undergo senescence or various forms of death including apoptosis, necrosis and necroptosis. These pathological changes not only promote the progression of the existing hepatopathies via various underlying mechanisms but are closely associated with hepatocarcinogenesis. In this review, we discuss the pathological changes that hepatocytes undergo during CLI, and their roles and mechanisms in the progression of hepatopathies and hepatocarcinogenesis. We also give a brief introduction about some animal models currently used for the research of CLI and progress in the research of CLI.
Protein arginine methyltransferase 1 (PRMT1) has been reported to be involved in various diseases. The expression of PRMT1 was increased in cirrhotic livers from human patients. However, the role of PRMT1 in hepatic fibrogenesis remains largely unexplored. In this study, we investigated the effect of PRMT1 on hepatic fibrogenesis and its underlying mechanism. We found that PRMT1 expression was significantly higher in fibrotic livers of the mice treated with thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet.Immunofluorescence staining revealed that PRMT1 expression was augmented in both hepatocytes and hepatic stellate cells (HSCs) in the fibrotic livers. Applying a selective inhibitor of PRMT1, PT1001B, significantly suppressed PRMT1 activity and mitigated liver fibrosis in mice. Hepatocyte-specific Prmt1 knockout did not affect liver fibrosis in mice. PRMT1 overexpression promoted the expression of fibrotic genes in the LX-2 cells, whereas knockdown of PRMT1 or treatment with PT1001B exhibited reversal effects, suggesting that PRMT1 plays an important role in HSC activation. Additionally, HSC-specific Prmt1 knockout attenuated HSC activation and liver fibrosis in TAA-induced fibrotic model. RNA-seq analysis revealed that Prmt1 knockout in HSCs significantly suppressed proinflammatory NF-κB and pro-fibrotic TGF-β signals, and also downregulated the expression of pro-fibrotic mediators in mouse livers. Moreover, treatment with PT1001B consistently inhibited hepatic inflammatory response in fibrotic model.In conclusion, PRMT1 plays a vital role in HSC activation. Inhibition of PRMT1 mitigates hepatic fibrosis by attenuating HSC activation in mice. Therefore, targeting PRMT1 could be a feasible therapeutic strategy for liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.