The utilization of recycled tyre polymer fibre (RTPF) into concrete production is feasible to promote sustainable development and mitigate environmental pollution of global landfilled waste tyres. This paper for the first time presents an experimental study on flexural fatigue behaviour of concrete reinforced with mixed RTPF considering different fibre dosages (i.e., 1.2, 2.4, 4.8 and 9.6 kg/m 3). Results indicate that with the presence of RTPF, the flexural strength of concrete was increased by 3.6-9.6%. The fatigue life of all mixtures followed the two-parameter Weibull distribution and can be accurately predicted using the developed double-logarithm fatigue equations. Concrete reinforced with 4.8 kg/m 3 of RTPF presented the longest fatigue life under different failure probabilities. RTPF and polypropylene fibre (PPF) reinforced concrete exhibited similar fatigue failure mechanisms. 0.2-0.4% Vf of RTPF could substitute around 0.1% Vf of PPF in concrete considering overall static, dynamic and fatigue performance.
Information encryption has become increasingly important in recent years; however, information encryption materials, especially those encrypting on a time scale, are still in fancy. Herein, a “time‐lock” information encryption material is developed based on a time‐dependent fluorescent hydrogel. The fluorescence color of this hydrogel can be regulated between green and yellow, with distinctive changes in intensity, on a time scale by controlling the concentration of urea/urease and HCl. By taking advantage of this feature, “time‐locked” information can be encoded. Such information self‐erases with time, and moreover, fake or even opposing information is generated during this process. The correct information can only be recognized at a specified time, i.e., using a “time‐key” to decrypt the information. This time‐dependent feature endows the material with a higher level of security and provides new insight for information encryption.
Ultrabroadband photodetection has been a hot topic with the rapid development of materials science and the application requirements for communication, imaging, and sensing. Photodetectors based on bandgap-independent bolometry are promising candidates for detection of light from the ultraviolet to the terahertz range. Here we report a photothermoelectric detector made of an alloy of EuBiSe3 single crystal. The device shows room-temperature self-powered photoresponse from ultraviolet (375 nm) to terahertz (163 μm) with nearly uniform sensitivity against wavelength and fast response speed. Thanks to the large thermoelectric power (Seebeck coefficient) of EuBiSe3, the photovoltage responsivity derived from the incident (not absorbed) power reaches as high as 1.69 V/W at 405 nm without any bias voltage and exceeds 0.59 V/W even at terahertz frequencies, with noise-equivalent power below 1 nW/ , which is 1–2 orders of magnitude lower than reported photothermoelectric detectors. The response time is around 200 ms, nearly 2 orders of magnitude faster than silicon-based heterojunction ultrabroadband photodetectors and on the same order as the millimetric-scale graphene- and carbon nanotube-based bolometric photodetectors. In addition, the as-grown EuBiSe3 crystal possesses a unique needle-like shape, intrinsically facilitating integration of the detector. Our work demonstrates that improved thermoelectric materials hold great promise for room-temperature, high-performance, broadband photodetection.
Nonalcoholic fatty liver disease (NAFLD) is a common chronic disease that threatens human health, and present therapies remain limited due to the lack of effective drugs. Lipid metabolic disturbance and oxidative stress have strong links to the development of NAFLD, while autophagy was generally accepted as a key regulatory mechanism on these steps. Our previous studies indicated that cherry anthocyanins (CACN) protected against high fat diet-induced obesity and NALFD in C57BL/6 mice, while the underlying molecule mechanism is still unclear. Thus, in this study, we show that CACN protect against oleic acid- (OA-) induced oxidative stress and attenuate lipid droplet accumulation in NAFLD cell models. According to the results of a transmission electron microscope (TEM), western blot, immunofluorescence (IF), and adenovirus transfection (Ad-mCherry-GFP-LC3B), autophagy is in accordance with the lipid-lowering effect induced by CACN. Further studies illustrate that CACN may activate autophagy via mTOR pathways. In addition, an autophagy inhibitor, 3-methyladenine (3-MA), was applied and the result suggested that autophagy indeed participates in the lipid clearance process in OA-induced lipid accumulation. All these results indicate that the positive effects of CACN on OA-induced hepatic lipid accumulation are mediated via activating autophagy, showing a potential target for the therapeutic strategy of NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.