Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal–oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal–oral transmission.
Immunization with this hepatitis E vaccine induced antibodies against HEV and provided protection against hepatitis E for up to 4.5 years. (Funded by the Chinese Ministry of Science and Technology and others; ClinicalTrials.gov number, NCT01014845.).
The ongoing global pandemic of COVID-19 disease, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mainly infect lung epithelial cells, and spread mainly through respiratory droplets. However, recent studies showed potential intestinal infection of SARS-CoV-2, implicated the possibility that the intestinal infection of SARS-CoV-2 may correlate with the dysbiosis of gut microbiota, as well as the severity of COVID-19 symptoms. Here, we investigated the alteration of the gut microbiota in COVID-19 patients, as well as analyzed the correlation between the altered microbes and the levels of intestinal inflammatory cytokine IL-18, which was reported to be elevated in the serum of in COVID-19 patients. Comparing with healthy controls or seasonal flu patients, the gut microbiota showed significantly reduced diversity, with increased opportunistic pathogens in COVID-19 patients. Also, IL-18 level was higher in the fecal samples of COVID-19 patients than in those of either healthy controls or seasonal flu patients. Moreover, the IL-18 levels were even higher in the fecal supernatants obtained from COVID-19 patients that tested positive for SARS-CoV-2 RNA than those that tested negative in fecal samples. These results indicate that changes in gut microbiota composition might contribute to SARS-CoV-2-induced production of inflammatory cytokines in the intestine and potentially also to the onset of a cytokine storm.
Background
The high cost and insufficient supply of human papillomavirus (HPV) vaccines have slowed the pace of controlling cervical cancer. A phase III clinical trial was conducted to evaluate the efficacy, safety, and immunogenicity of a novel Escherichia coli-produced bivalent HPV-16/18 vaccine.
Methods
A multicenter, randomized, double-blind trial started on November 22, 2012 in China. In total, 7372 eligible women aged 18–45 years were age-stratified and randomly assigned to receive three doses of the test or control (hepatitis E) vaccine at months 0, 1, and 6. Co-primary endpoints included high-grade genital lesions and persistent infection (over 6 months) associated with HPV-16/18. The primary analysis was performed on a per-protocol susceptible population of individuals who were negative for relevant HPV type-specific neutralizing antibodies (at day 0) and DNA (at day 0 through month 7) and who received three doses of the vaccine. This report presents data from a prespecified interim analysis used for regulatory submission.
Results
In the per-protocol cohort, the efficacies against high-grade genital lesions and persistent infection were 100.0% (95% confidence interval = 55.6% to 100.0%, 0 of 3306 in the vaccine group vs 10 of 3296 in the control group) and 97.8% (95% confidence interval = 87.1% to 99.9%, 1 of 3240 vs 45 of 3246), respectively. The side effects were mild. No vaccine-related serious adverse events were noted. Robust antibody responses for both types were induced and persisted for at least 42 months.
Conclusions
The E coli-produced HPV-16/18 vaccine is well tolerated and highly efficacious against HPV-16/18–associated high-grade genital lesions and persistent infection in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.