The Langmuir probe is a feasible method to measure plasma parameters. However, as the reaction progresses in the discharged plasma, the contamination would be attached to the probe surface and lead to a higher incorrect electron temperature. Then, the electron density cannot be obtained. This paper reports a simple approach to combining the Langmuir probe and the optical emission spectrometry (OES), which can be used to obtain the electron temperature to solve this problem. Even the Langmuir probe is contaminative, the probe current–voltage (I–V) curve with the OES spectra also gives the approximate electron temperature and density. A homemade coaxial line microwave plasma source driven by a 2.45 GHz magnetron was adopted to verify this mothed, and the electron temperature and density in different pressure (40–80 Pa) and microwave power (400–800 W) were measured to verify that it is feasible.
A dual-frequency plasma source has many advantages in applications. In this paper, a dual-frequency microwave plasma source is presented. This microwave plasma source is based on a coaxial transmission line without the resonator, and it can be operated in a wide band frequency region. Two microwaves are inputted from two ports into the plasma reactor: one is used firstly to excite the plasma and the other one is used to adjust plasma characteristics. Based on the COMSOL Multiphysics simulation, the experiment is carried out. In the experimental investigation, the plasma electron density and electron temperature can be controlled, respectively, by feeding in different frequencies from the second port, causing the particles at different energy levels to present different frequencies. This exploratory research improves the operation frequency of dual-frequency microwave plasma sources from RF to microwave.
In this paper, we researched the optical properties of asymmetric transmission devices for onedimensional functions photonic crystals. The refractive indices of media A and B are not constant, it is the functions of space coordinate. By calculated the transmissivity and electric field distribution of asymmetric transmission devices, we found that when the forward incident light can transmit the function photonic crystals, but the backward incident light did not transmit through it, the function photonic crystals can be made into asymmetric transmission devices. Such as optical diodes or optical triode, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.