The vapor-liquid equilibrium (VLE) of CO2 in a reactive solvent is essential for the proper simulation and design of CO2 absorption processes. This work presents a systematic investigation on CO2 absorption in various aqueous monoethanolamine (MEA) solutions. CO2 solubility in MEA was measured at 298, 313, 333, and 353 K with CO2 partial pressure ranging from 34.5 to 78.0 kPa. A modified Kent-Eisenberg model was developed based on the measured solubility data, showing good predictions over the liquid phase speciation for the CO2-H2O-MEA system. We presented a new analysis based on the first-order difference curve of distribution profiles of the species. Based on the main reactions that occurred, the CO2 absorption process was demonstrated to be divided into four regions with increasing CO2 loading from 0 to 1. Accordingly, kinetic study was proposed to be conducted in the first region, whereas measuring of mass transfer in the first three regions. The findings in this work extend the existing knowledge of CO2 absorption process in terms of speciation and can provide important guidance for further study of the process characteristics using aqueous amine absorbents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.