Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy.
Cardiopulmonary bypass (CPB) procedures are frequently associated with massive inflammatory responses, resulting in a high rate of morbidity and mortality in routine cardiac operations. One recognized attribute of these deleterious responses is the synergic effect of heparin and protamine, which elicit the activation of the complement system in vivo. To circumvent such toxic effects following protamine reversal of heparin anticoagulation in the CPB procedures, we proposed that poly(ethylene glycol) (PEG)-modified protamine could retain the heparin-neutralization ability and yet diminish the induced complement activation by the formed heparin-protamine complexes (HPC), thereby providing highly improved pharmacological properties. PEGylation of protamine was carried out by utilizing N-hydroxysuccinimidyl (NHS) conjugation chemistry. Size exclusion chromatography (SEC), reverse-phase high performance liquid chromatography (RP-HPLC), and matrix-assisted laser desorption mass spectrometry (MALDI-MS) were used to assess the conjugation stiochiometry, the purity of the conjugates, and the site of PEG modification, respectively. The heparin-neutralizing activity was determined by using heparin affinity chromatography and various biological assays including the plasma-activated partial thromboplastin time (aPTT), anti-Xa, and anti-IIa methods. The potency in inducing complement activation was examined in vitro using the CH50 hemolytic assay. The PEG-modified protamine was successfully synthesized with a PEG/protamine stiochiometry of 1:1. Only one conjugation site for PEG that was located at the N-terminal end of protamine was obtained. In the biological evaluations, the PEG-modified protamine displayed a full retention of the heparin-neutralizing ability of protamine and a significantly reduced activity in complement activation following its complexation with heparin. Results from studies of the particle size and zeta potential indicated that the PEG-modified protamine formed substantially smaller aggregates with heparin, rendering them less effective in triggering the size-dependent complement responses. As with protamine, PEG-modified protamine exhibited an enhanced aqueous solubility, therefore attaining significantly improved pharmaceutical properties. These preliminary results suggested that the PEG-modified protamine conjugate might serve as a potential protamine substitute with improved therapeutic and pharmaceutical properties in heparin reversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.